首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrates that neutralizing-antibody-producing B cells, CD4(+) T cells, and interferons (IFNs) are of key importance in virus control both in adoptive immunotherapy of persistent infection and in the late phase of acute infection with the WE strain of lymphocytic choriomeningitis virus (LCMV). We report the following results. (i) Clearance of LCMV-WE from C57BL/6 carrier mice by adoptive transfer of memory spleen cells requires B cells and CD4(+) T cells but not necessarily CD8(+) T cells. (ii) At the doses examined, CD8(+) T cells contribute to the initial reduction of viral titers but are alone not sufficient to clear the virus because they are exhausted. (iii) In the presence of functional IFN-gamma, virus clearance correlates well with the generation of neutralizing antibodies in the treated carrier mice. (iv) In the absence of receptors for IFN-gamma, virus clearance is not achieved. (v) Adoptive immunotherapy of mice persistently infected with a distinct virus isolate, LCMV-Armstrong, revealed only low levels of neutralizing antibodies; in this case, CD8(+) T cells were needed for virus clearance in addition to B and CD4(+) T cells. (vi) After low dose infection of C57BL/6 mice with LCMV-WE, virus is eliminated below detectable levels by CD8(+) T cells, but long-term (>2 months) virus control is usually not achieved in the absence of B cells or CD4(+) T cells; reappearance of the virus is paralleled either by exhaustion of virus-specific cytotoxic T lymphocytes or lethal immunopathology. These findings are of importance for adoptive immunotherapy strategies against persistent virus infections in humans.  相似文献   

2.
This study describes the construction of soluble major histocompatibility complexes consisting of the mouse class I molecule, H-2Db, chemically biotinylated beta2 microglobulin and a peptide epitope derived from the glycoprotein (GP; amino acids 33-41) of lymphocytic choriomeningitis virus (LCMV). Tetrameric class I complexes, which were produced by mixing the class I complexes with phycoerythrin-labeled neutravidin, permitted direct analysis of virus-specific cytotoxic T lymphocytes (CTLs) by flow cytometry. This technique was validated by (a) staining CD8+ cells in the spleens of transgenic mice that express a T cell receptor (TCR) specific for H-2Db in association with peptide GP33-41, and (b) by staining virus-specific CTLs in the cerebrospinal fluid of C57BL/6 (B6) mice that had been infected intracranially with LCMV-DOCILE. Staining of spleen cells isolated from B6 mice revealed that up to 40% of CD8(+) T cells were GP33 tetramer+ during the initial phase of LCMV infection. In contrast, GP33 tetramers did not stain CD8+ T cells isolated from the spleens of B6 mice that had been infected 2 mo previously with LCMV above the background levels found in naive mice. The fate of virus-specific CTLs was analyzed during the acute phase of infection in mice challenged both intracranially and intravenously with a high or low dose of LCMV-DOCILE. The results of the study show that the outcome of infection by LCMV is determined by antigen load alone. Furthermore, the data indicate that deletion of virus-specific CTLs in the presence of excessive antigen is preceded by TCR downregulation and is dependent upon perforin.  相似文献   

3.
A DNA vaccine plasmid containing the Japanese encephalitis (JE) virus premembrane (prM) and envelope (E) genes (designated pcDNA3JEME) was evaluated for immunogenicity and protective efficacy in mice. Two immunizations of 4-week-old female ICR mice with pcDNA3JEME by intramuscular or intradermal injections at a dose of 10 or 100 microg per mouse elicited neutralizing (NEUT) antibodies at titers of 1:10 to 1:20 (90% plaque reduction), and all immunized mice survived a challenge with 10,000 50% lethal doses of the P3 strain of JE virus. A single immunization with 100 microg of pcDNA3JEME did not elicit detectable NEUT antibodies but induced protective immunity. Spleen cells obtained from BALB/c mice immunized once with 10 or 100 microg of pcDNA3JEME contained JE virus-specific memory cytotoxic T lymphocytes (CTLs). BALB/c mice maintained detectable levels of memory B cells and CTLs for at least 6 months after one immunization with pcDNA3JEME at a dose of 100 microg. The CTLs induced in BALB/c mice immunized twice with 100 microg of pcDNA3JEME were CD8 positive and recognized mainly the envelope protein. These results indicate that pcDNA3JEME has the ability to induce a protective immune response which includes JE virus-specific antibodies and CTLs.  相似文献   

4.
In this study, we used mice in which the gene for gamma interferon (IFN-gamma) has been disrupted (IFN-gamma-/- mice) to study the role of this cytokine in the resolution of Chlamydia trachomatis infection. We show that IFN-gamma-/- mice are impaired in the ability to clear infection with C. trachomatis compared to IFN-gamma+/+ control mice. Activated CD8(+) cytotoxic T lymphocytes (CTL) secrete IFN-gamma in response to intracellular infection, and we have shown previously that a Chlamydia-specific CTL line can reduce C. trachomatis infection when adoptively transferred into infected mice. In the present study, we found that when these IFN-gamma+/+ CTL lines are transferred into Chlamydia-infected IFN-gamma-/- mice, the transferred CTL cannot overcome the immune defect seen in the IFN-gamma-/- mice. We also show that Chlamydia-specific CTL can be cultured from IFN-gamma-deficient mice infected with C. trachomatis; however, the adoptive transfer of IFN-gamma-/- CTL into infected IFN-gamma+/+ mice does not reduce the level of infection. These results suggest that IFN-gamma production by CTL is not sufficient to overcome the defect that IFN-gamma-/- mice have in the resolution of Chlamydia infection, yet IFN-gamma production by CTL is required for the protective effect seen upon adoptive transfer of CTL into IFN-gamma+/+ mice.  相似文献   

5.
6.
Ig class switching usually occurs as a consequence of cognate interactions between antigen-specific B cells and CD4(+) alphabeta T cells. Vesicular stomatitis virus (VSV) infection of immunocompetent mice induces a rapid T-independent neutralizing IgM response followed by a long-lived T-dependent IgG response. Surprisingly, alphabeta T cell-deficient (TCRalpha-/-) mice also produced neutralizing IgG antibodies when infected with live VSV or with a recombinant vaccinia virus expressing the VSV glycoprotein (Vacc-IND-G), but not when immunized with UV-inactivated VSV (UV-VSV). The neutralizing IgG responses did not require the presence of NK cells or complement, but were crucially dependent on IFN-gamma and were predominantly of the IgG2a isotype. IgG production depended on residual CD3(+) non-alphabeta T cell populations present in the TCRalpha-/- mice, which produced IFN-gamma upon in vitro stimulation. A key role for gammadelta T cells was confirmed by the fact that TCRbeta-/- mice also generated strong neutralizing IgG responses to VSV, whereas TCRbeta-/-delta-/- mice produced very low titers. The neutralizing IgG responses of TCRalpha-/- mice were accompanied by the development of memory B cells, but not by antigen-specific germinal center (GC) formation. Thus, during viral infection of alphabeta T cell-deficient mice, gammadelta T cells may provide the signals that are required for isotype switching.  相似文献   

7.
We studied cytokines and anti-cytokine autoantibodies (Aabs) during T.b.brucei infections in IFN-gamma-/-, IFN-gammaR-/- and wild-type mice. Increased serum levels of IFN-gamma, TNF-gamma and IL-4 with decreased Aabs to these cytokines were recorded early during infections in all mice (except IFN-gamma in IFN-gamma-/- mice). Later, these responses were reversed, and surprisingly Aabs reacting to IFN-gamma in the IFN-gamma -/- mice were detected. To examine the possibility that an IFN-? immunoreactive molecule might be expressed due to infections and upon gene deletion, anti-IFN-gamma antibody was inoculated and resulted in abrogation of such Aabs. The scenario was different for IL-10 and TGF- since IFN-gammaR-/- and wild-type mice showed low cytokines and high Aabs early during infections, but later high cytokines and low Aabs were registered. Interestingly, IFN-gamma-/- mice exhibited reversed levels of both IL-10 and TGF-beta, and also of their Aabs. Fab fragments of purified serum immunoglobulins showed binding and neutralizing effects in biological assays. Pre-absorption of the Fab fragments with a cytokine inhibited the binding and neutralization effects of this cytokine, but not of other cytokines. These results highlight an important role for autoimmunity in cytokine regulation, and that genomic deletion of IFN-gamma modulates cytokines and their Aab responses in experimental African trypanosomiasis.  相似文献   

8.
Human severe combined immunodeficiency (SCID) can be caused by defects in Janus kinase 3 (JAK3)-dependent cytokine signaling pathways. As a result, patients are at high risk of life-threatening infection. A JAK3 -/- SCID mouse model for the human disease has been used to test whether transplant with retrovirally transduced bone marrow (BM) cells (JAK3 BMT) could restore immunity to an influenza A virus. The immune responses also were compared directly with those for mice transplanted with wild-type BM (+/+ BMT). After infection, approximately 90% of the JAK3 BMT or +/+ BMT mice survived, whereas all of the JAK3 -/- mice died within 29 days. Normal levels of influenza-specific IgG were present in plasma from JAK3 BMT mice at 14 days after respiratory challenge, indicating restoration of B cell function. Influenza-specific CD4(+) and CD8(+) T cells were detected in the spleen and lymph nodes, and virus-specific CD8(+) effectors localized to the lungs of the JAK3 BMT mice. The kinetics of the specific host response correlated with complete clearance of the virus within 2 weeks of the initial exposure. By contrast, the JAK3 -/- mice did not show any evidence of viral immunity and were unable to control this viral pneumonia. Retroviral-mediated JAK3 gene transfer thus restores diverse aspects of cellular and humoral immunity and has obvious potential for human autologous BMT.  相似文献   

9.
A basic principle of immunology is that prior immunity results in complete protection against a homologous agent. In this study, we show that memory T cells specific to unrelated viruses may alter the host's primary immune response to a second virus. Studies with a panel of heterologous viruses, including lymphocytic choriomeningitis (LCMV), Pichinde (PV), vaccinia (VV), and murine cytomegalo (MCMV) viruses showed that prior immunity with one of these viruses in many cases enhanced clearance of a second unrelated virus early in infection. Such protective immunity was common, but it depended on the virus sequence and was not necessarily reciprocal. Cell transfer studies showed that both CD4 and CD8 T cell populations from LCMV-immune mice were required to transfer protective immunity to naive hosts challenged with PV or VV. In the case of LCMV-immune versus naive mice challenged with VV, there was an enhanced early recruitment of memory phenotype interferon (IFN) gamma-secreting CD4(+) and CD8(+) cells into the peritoneal cavity and increased IFN-gamma levels in this initial site of virus replication. Studies with IFN-gamma receptor knockout mice confirmed a role for IFN-gamma in mediating the protective effect by LCMV-immune T cell populations when mice were challenged with VV but not PV. In some virus sequences memory cell populations, although clearing the challenge virus more rapidly, elicited enhanced IFN-gamma-dependent immunopathogenesis in the form of acute fatty necrosis. These results indicate that how a host responds to an infectious agent is a function of its history of previous infections and their influence on the memory T cell pool.  相似文献   

10.
The immune responses to Helicobacter pylori infection play important roles in gastroduodenal diseases. The contribution of gamma interferon (IFN-gamma) to the immune responses, especially to the induction of gastric inflammation and to protection from H. pylori infection, was investigated with IFN-gamma gene knockout (IFN-gamma-/-) mice. We first examined the colonizing abilities of eight H. pylori strains with a short-term infection test in order to select H. pylori strains which could colonize the mouse stomach. Only three strains (ATCC 43504, CPY2052, and HPK127) colonized C57BL/6 wild-type mice, although all of the strains except for ATCC 51110 could colonize IFN-gamma-/- mice. The number of H. pylori organisms colonizing the stomach in wild-type mice was lower than that in IFN-gamma-/- mice. Oral immunization with the CPY2052 sonicate and cholera toxin protected against infection with strain CPY2052 in both types of mouse. These findings suggested that IFN-gamma may play a protective role in H. pylori infection, although the degree of its protective ability was estimated to be low. In contrast, in a long-term infection test done to examine the contribution of IFN-gamma to gastric inflammation, CPY2052-infected wild-type mice developed a severe infiltration of mononuclear cells in the lamina propria and erosions in the gastric epithelium 15 months after infection, whereas CPY2052-infected IFN-gamma-/- mice showed no inflammatory symptoms. This result clearly demonstrated that IFN-gamma plays an important role in the induction of gastric inflammation caused by H. pylori infection.  相似文献   

11.
Gamma interferon-deficient (IFN-gamma-/-) mice with a C57BL/6 background were infected intraperitoneally with mouse hepatitis virus strain JHM (JHMV). In contrast to IFN-gamma-+/- and IFN-gamma+/+ mice, JHMV persisted in IFN-gamma-/- mice and induced death during the subacute phase of the infection. Unexpectedly, infected IFN-gamma-/- mice showed severe peritonitis accompanying the accumulation of a viscous fluid in the abdominal and thoracic cavities in the subacute phase. Destructive changes of hepatocytes were not observed. Administration of recombinant IFN-gamma protracted the survival time of IFN-gamma-/- mice after JHMV infection. These results demonstrate that IFN-gamma plays a critical role in viral clearance in JHMV infection. They also show that a resultant persistent JHMV infection induces another form of disease in IFN-gamma-/- mice, which bears a resemblance to feline infectious peritonitis in cats.  相似文献   

12.
In susceptible mouse strains, the wild-type Daniel's (wt-DA) strain of Theiler's murine encephalomyelitis virus induces a persistent central nervous system (CNS) infection with chronic demyelination. The virus is cleared from resistant mice with no resulting demyelination. We characterized the role of the DA L* protein in late demyelination and persistent infection. The DA genome has two alternative reading frames, encoding the virus polyprotein and L*, respectively. The mutant virus DAL*-1 fails to synthesize L* and does not persist in the CNS of wt-DA-susceptible SJL/J or B10.S mice. Since class I-restricted cytotoxicity has been shown to determine resistance to virus persistence and demyelination in this model, virus-specific cytotoxicity in the CNS of DA-resistant (B6 or B10) and -susceptible (SJL/J and B10.S) mice during the acute stage of DA and DAL*-1 infection was characterized. Following intracerebral inoculation with DAL*-1, virus-specific Db- and Kb-restricted CTLs were demonstrated in the CNS of resistant B10 mice, whereas only Db-restricted CTL were found in wt-DA-inoculated mice. CTLs specific to wt-DA or DAL*-1 recognized class I-presented peptides from either of the viruses. Of particular interest, Ks-restricted virus-specific cytotoxicity-restricted CTLs were identified in the CNS of susceptible SJL/J (H-2s) and B10.S (H-2s) mice inoculated with DAL*-1. In contrast, no virus-specific CTLs were identified in the CNS of SJL/J and B10.S mice inoculated with wt-DA. We propose that L* inhibits the generation of H-2K-restricted virus-specific cytotoxicity in the CNS, permitting a persistent infection in susceptible strains, with subsequent inflammatory demyelination in the CNS similar to that in human multiple sclerosis.  相似文献   

13.
Viral infection often activates the interferon (IFN)-gamma-inducible gene, nitric oxide synthase 2 (NOS2). Expression of NOS2 can limit viral growth but may also suppress the immune system and damage tissue. This study assessed each of these effects in genetically deficient NOS2(-/-) mice after infection with influenza A, a virus against which IFN-gamma has no known activity. At inocula sufficient to cause consolidating pneumonitis and death in wild-type control mice, NOS2(-/-) hosts survived with little histopathologic evidence of pneumonitis. Moreover, they cleared influenza A virus from their lungs by an IFN-gamma-dependent mechanism that was not evident in wild-type mice. Even when the IFN-gamma-mediated antiviral activity was blocked in NOS2(-/-) mice with anti-IFN-gamma mAb, such mice failed to succumb to disease. Further evidence that this protection was independent of viral load was provided by treating NOS2(+/+) mice with the NOS inhibitor, Nomega-methyl-L-arginine (L-NMA). L-NMA prevented mortality without affecting viral growth. Thus, host NOS2 seems to contribute more significantly to the development of influenza pneumonitis in mice than the cytopathic effects of viral replication. Although NOS2 mediates some antiviral effects of IFN-gamma, during influenza infection it can suppress another IFN-gamma-dependent antiviral mechanism. This mechanism was observed only in the complete absence of NOS2 activity and appeared sufficient to control influenza A virus growth in the absence of changes in cytotoxic T lymphocyte activity.  相似文献   

14.
Dissection of the primary and secondary response to an influenza A virus established that the liver contains a substantial population of CD8(+) T cells specific for the immunodominant epitope formed by H-2Db and the influenza virus nucleoprotein peptide fragment NP366-374 (DbNP366). The numbers of CD8(+) DbNP366(+) cells in the liver reflected the magnitude of the inflammatory process in the pneumonic lung, though replication of this influenza virus is limited to the respiratory tract. Analysis of surface phenotypes indicated that the liver CD8(+) DbNP366(+) cells tended to be more "activated" than the set recovered from lymphoid tissue but generally less so than those from the lung. The distinguishing characteristic of the lymphocytes from the liver was that the prevalence of the CD8(+) DbNP366(+) set was always much higher than the percentage of CD8(+) T cells that could be induced to synthesize interferon gamma after short-term, in vitro stimulation with the NP366-374 peptide, whereas these values were generally comparable for virus-specific CD8(+) T cells recovered from other tissue sites. Also, the numbers of apoptotic CD8(+) T cells were higher in the liver. The results overall are consistent with the idea that antigen-specific CD8(+) T cells are destroyed in the liver during the control and resolution phases of this viral infection, though this destruction is not necessarily an immediate process.  相似文献   

15.
Lymphocytic choriomeningitis virus (LCMV) infection in mice provides an example of an extraordinarily dynamic process with an extreme sensitivity of phenotype of infection to parameters of virus/host interaction. A mathematical model is developed to examine the dynamics of virus-specific cytotoxic T lymphocyte (CTL) response for LCMV infection in mice. The model, formulated by a system of nonlinear delay-differential equations, considers the interacting populations of viruses, precursor CTLs, terminally differentiated effector CTLs and total virus antigen load. Clonal elimination of virus-specific cytotoxic T cells in high-dose LCMV-Docile infection represents an example of the classical phenomenon--high zone tolerance. To describe both conventional and exhaustive CTL responses in the acute phase of LCMV-D infection two mechanisms are invoked: the high virus antigen load inhibition of T-cells proliferation via energy induction and the activation-induced cell death by apoptosis. Parameters of the model, characterizing the rates of virus and CTL production and elimination in spleen, are estimated by assimilating with the model data on the LCMV-D infection in C57BL/6 mice for low-, moderate- and high-dose infections. It is suggested that not only the clonal expansions have to be described in mathematical models as being virus regulated but also the later phases of primary immune response. Down-regulation of the primary CTL response is controlled by a network of mechanisms inducing anergy and apoptosis in activated T cells. The model is used to investigate the effect of variations in virus and CTL response parameters on LCMV infection outcome and suggest predictions for experimental studies, in particular the phenotype of LCMV-WE infection in C57BL/6 as a function of initial virus doses.  相似文献   

16.
The role of B7-1 and B7-2 costimulatory molecules in the generation of Ag-specific CD8+ CTLs is not well understood. In this paper, we analyze the role of both B7-1 and B7-2 in the generation of CTLs to nonliving, exogenous Ag and to live virus. To analyze the role of B7 costimulation in the induction of CTLs, we blocked B7-1 and/or B7-2 in vivo by injecting C57BL/6 mice with anti-B7-1 and/or anti-B7-2 mAbs; the mice were subsequently immunized with either chicken OVA that had been cross-linked to beads as a model of exogenous Ags or with wild-type and recombinant vaccinia virus expressing different forms of chicken OVA as models of viral Ags. Our results indicate that B7 costimulation is necessary in the generation of CTLs for all of these Ags. Since the B7 molecules could be costimulating CD8+ and/or CD4+ T cells in wild-type animals, we also examined the role of costimulation in the generation of CTLs to exogenous and viral Ag in MHC class II-deficient mice lacking most CD4+ T cells. In these animals, a combination of both mAbs also blocked all CTL responses, indicating that the Th cell-independent activation of CTLs is dependent upon the B7-costimulatory signals supplied to the CD8+ cell. These findings contribute to the understanding of the role of costimulation for the generation of CTLs. We also discuss the implications of these findings on the role of professional APCs in the initiation of CTL responses.  相似文献   

17.
Aplastic anemia may be associated with persistent viral infections that result from failure of the immune system to control virus. To evaluate the effects on hematopoiesis exerted by sustained viral replication in the presence of activated T cells, blood values and bone marrow (BM) function were analyzed in chronic infection with lymphocytic choriomeningitis virus (LCMV) in perforin-deficient (P0/0) mice. These mice exhibit a vigorous T cell response, but are unable to eliminate the virus. Within 14 d after infection, a progressive pancytopenia developed that eventually was lethal due to agranulocytosis and thrombocytopenia correlating with an increasing loss of morphologically differentiated, pluripotent, and committed progenitors in the BM. This hematopoietic disease caused by a noncytopathic chronic virus infection was prevented by depletion of CD8+, but not of CD4+, T cells and accelerated by increasing the frequency of LCMV-specific CD8+ T cells in T cell receptor (TCR) transgenic (tg) mice. LCMV and CD8+ T cells were found only transiently in the BM of infected wild-type mice. In contrast, increased numbers of CD8+ T cells and LCMV persisted at high levels in antigen-presenting cells of infected P0/0 and P0/0 x TCR tg mice. No cognate interaction between the TCR and hematopoietic progenitors presenting either LCMV-derived or self-antigens on the major histocompatibility complex was found, but damage to hematopoiesis was due to excessive secretion and action of tumor necrosis factor (TNF)/lymphotoxin (LT)-alpha and interferon (IFN)-gamma produced by CD8+ T cells. This was studied in double-knockout mice that were genetically deficient in perforin and TNF receptor type 1. Compared with P0/0 mice, these mice had identical T cell compartments and T cell responses to LCMV, yet they survived LCMV infection and became life-long virus carriers. The numbers of hematopoietic precursors in the BM were increased compared with P0/0 mice after LCMV infection, although transient blood disease was still noticed. This residual disease activity was found to depend on IFN-gamma-producing LCMV-specific T cells and the time point of hematopoietic recovery paralleled disappearance of these virus-specific, IFN-gamma-producing CD8+ T cells. Thus, in the absence of IFN-gamma and/or TNF/LT-alpha, exhaustion of virus-specific T cells was not hampered.  相似文献   

18.
Mice transgenic for a TCR that recognizes peptide110-120 of hemagglutinin of PR8 influenza virus in the context of MHC class II I-Ed molecules express the transgenes in both CD4+ and CD8+ T cells. We have found that these TCR-hemagglutinin (TCR-HA) transgenic mice display a significantly increased resistance to the primary infection with PR8 virus compared with the wild-type mice. The TCR-HA transgenic mice mounted significant MHC type II and enhanced MHC type I-restricted cytotoxicity as well as increased cytokine responses in both spleen and lungs after infection with PR8 virus. In contrast, the primary humoral response against PR8 virus was not significantly different from that of the wild-type mice. In vivo depletion and adoptive cell transfer experiments demonstrated that both CD4+ and CD8+ TCR-HA+ T cell subsets were required for the complete clearance of pulmonary virus following infection with a dose that is 100% lethal in wild-type mice. Whereas CD4+ TCR-HA+ T cells were necessary for effective activation and local recruitment of CD8+ T cells, CD8+ TCR-HA+ T cells showed a Th1-biased pattern and MHC type II-restricted cytotoxicity. However, in the absence of in vivo expression of MHC type I molecules on the infected cells, the protection conferred by the TCR-HA+ T cells was impaired, indicating that the enhanced MHC class I-restricted cytotoxicity due to TCR-HA+ CD4+ Th cells was a critical element for clearance of the pulmonary virus by the transgenic mice.  相似文献   

19.
The reciprocal regulation of T-helper cell (Th) subsets is widely documented in various animal models of infectious diseases. In this study IFN-gamma/IL-4 double knockout (DKO) mice were used to analyse the role of Th subsets in mucosal immune responses. We found that the DKO mice had normal IgA differentiation but impaired induction of specific gut mucosal antibody responses after oral immunization using cholera toxin adjuvant. Both Th1 and Th2 responses were reduced compared with wild-type mice. Despite the absence of both IFN-gamma and IL-4 in the DKO mice the overall results were similar to previous observations in IFN-gamma receptor-knockout (IFN-gammaR-/-) mice and did not suggest a strict cross-regulation of the two Th subsets in the gut mucosa. To further examine the role of IFN-gamma in mucosal immunity we compared two different mouse strains lacking IFN-gamma, i.e. IFN-gamma-/- (C57BL/6) and IFN-gammaR-/- mice (129/Sv). We found that IFN-gammaR-/- mice exhibited reduced mucosal antibody responses and decreased Th1 and Th2 activity after oral immunization, while IFN-gamma-/- mice had intact antibody responses and increased Th2 responses. Thus, genetic differences were found to critically affect the development of a specific gut mucosal immune response. An enhanced Th2 activity in the Peyer's patches following oral immunization was associated with an ability to mount strong intestinal IgA immunity.  相似文献   

20.
Acute viral infections often induce a transient period of immune deficiency in which the host's T cells fail to proliferate in response to T-cell mitogens and fail to make an antigen-specific memory recall response. This has been associated with the enhanced sensitivity of these highly activated T cells to undergo apoptosis, or activation-induced cell death (AICD), upon T-cell receptor ligation. Here we show that gamma interferon receptor-deficient (IFN-gamma R-/-) mice mount a T-cell response to lymphocytic choriomeningitis virus (LCMV) infection but fail to undergo the transient immune deficiency. Instead, their T cells were hyperproliferative and relatively, but not completely, resistant to AICD. The immune response returned to homeostasis, but with delayed kinetics, in parallel with delayed clearance of the virus. Wild-type mice receiving high doses of disseminating LCMV Clone 13 are known to undergo clonal exhaustion of their virus-specific cytotoxic T lymphocytes (CTL). To determine whether this process was mediated by AICD associated with IFN-gamma or with Fas-Fas ligand interactions, LCMV-specific precursor CTL frequencies were examined in LCMV Clone 13-infected IFN-gamma R-/- or lpr (Fas-deficient) mice. In both instances, viral persistence was established and CTL precursors were greatly eliminated. This finding indicates that clonal exhaustion of CTL does not require IFN-gamma or Fas, even though both molecules influence AICD and the transient immune deficiency seen in the LCMV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号