首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
新型增韧阻燃ABS研究   总被引:1,自引:1,他引:0  
采用环保阻燃剂2,4,6-三(三溴苯氧基)三聚氰酸酯进行ABS阻燃改性,并对阻燃剂进行分散处理,制备了环保阻燃ABS;并对其进行增韧改性.结果表明:分别采用热塑性弹性体粉(SBS类)、ABS高胶粉、丁腈橡胶粉对阻燃ABS进行增韧,丁腈橡胶粉增韧效果更为明显,冲击强度较未增韧时提高了 16.3%,而且对材料阻燃性未造成影响.  相似文献   

2.
新型环保阻燃ABS高抗冲和流动性研究   总被引:1,自引:0,他引:1  
针对RoHS指令,采用新型环保阻燃剂2,4,6-三(三溴苯氧基)三聚氰酸酯对ABS进行阻燃改性,并使用增韧剂和流动改性剂对阻燃ABS材料进行增韧和流动性改性.结果表明:改性后环保阻燃ABS的冲击强度和流动性能提高,完全符合大型薄壁塑料电器外壳的要求.  相似文献   

3.
以丙烯腈-苯乙烯-丁二烯共聚物(ABS)为基体材料,加入阻燃剂(溴-锑阻燃体系)、抗静电剂、增韧剂制备了矿用电器外壳材料。考察了不同阻燃剂、抗静电剂、增韧剂对ABS性能的影响。结果表明:选用优化配方的阻燃抗静电ABS复合体系具有良好的阻燃和抗静电性能;分别采用SBS、ABS髙胶粉、MBS对阻燃抗静电ABS进行增韧,ABS髙胶粉增韧效果最好,当其质量分数为15%时,制品在-25℃、冲能7J时不损坏、无裂纹,而且对材料阻燃性未造成影响;利用该改性ABS材料制备的电器外壳各项性能均能满足矿用标准要求。  相似文献   

4.
为了实现聚碳酸酯(PC)/丙烯腈–丁二烯–苯乙烯塑料(ABS)回收资源的合理化应用,对回收PC/ABS机壳材料进行了增韧及阻燃改性研究。结果表明,回收PC/ABS机壳材料的加工温度越高,性能越差。在回收PC/ABS机壳材料中添加增韧剂能明显提高回收料的韧性,且添加具有增容作用的甲基丙烯酸甲酯–丁二烯–苯乙烯共聚物(MBS)比高胶粉增韧效果更明显,添加5%的MBS后综合力学性能最佳。添加阻燃剂能有效提高回收料的阻燃性能,同时添加十溴二苯乙烷的阻燃效果优于有机磷酸酯类阻燃剂。当添加质量分数5%十溴二苯乙烷时,回收PC/ABS材料的性能最佳,缺口冲击强度为10.9 k J/m~2,同时也可以达到1.6 mm的UL94 V–0级别。  相似文献   

5.
在ABS中加入乙烯/醋酸乙烯共聚物接枝马来酸酐(EVA-g-MAH)进行增韧改性,探讨了以银纹化增韧的弹性体的增韧机理以及EVA-g-MAH与ABS分散均匀性等问题。结果表明,添加10份EVA-g-MAH增韧的阻燃ABS冲击强度增幅达35%,热塑性弹性体增韧阻燃ABS主要以银纹化增韧机理进行增韧,但随着EVA-g-MAH用量的增加,其机械强度损失也越来越大。  相似文献   

6.
增韧阻燃母粒的研制及其改性ABS的应用   总被引:1,自引:0,他引:1  
分别采用马来酸酐接枝(乙烯/丙烯/二烯)共聚物(EPDM-g-MAH)、(苯乙烯/丁二烯/苯乙烯)嵌段共聚物(SBS)和(丙烯腈/丁二烯/苯乙烯)共聚物(ABS)与复合阻燃剂等研制了增韧阻燃母粒,讨论了各组分的选用和EPDM-g-MAH与SBS的增韧机理,考察了以EPDM-g-MAH、SBS和ABS为载体的增韧阻燃母粒改性的阻燃ABS的阻燃性能和力学性能。结果表明,以EPDM-g-MAH、SBS为载体的增韧阻燃母粒较之以ABS为载体的增韧阻燃母粒对ABS有明显的增韧效果。用以SBS为载体的增韧阻燃母粒改性的阻燃ABS已被用于生产电器插座、电动工具及家用电器等的外壳。  相似文献   

7.
以溴化环氧树脂(BEO)、溴代三嗪(BrN)、复配溴代三嗪/四溴双酚A(BrN/TBBA)为阻燃剂,三氧化二锑(Sb2O3)为阻燃协效剂,氯化聚乙烯(CPE)为增韧剂,对丙烯腈-丁二烯-苯乙烯(ABS)进行增韧阻燃改性,并对阻燃ABS进行水煮老化试验。结果表明,3种阻燃体系对ABS都有优异的阻燃效果:BrN阻燃ABS具有最佳的缺口冲击强度;CPE不仅具有优异的增韧效果,也有协效阻燃的作用,添加CPE后,阻燃ABS的韧性和阻燃性均有提高;BrN阻燃体系也具有良好的耐水煮性能,水煮后色差和力学性能变化最小。CPE的加入增加了材料的吸水性,使得阻燃ABS的颜色变化加剧,但缺口冲击强度明显提升,3种阻燃体系的缺口冲击强度分别提升39.5%、18.7%和14.0%,且阻燃性能仍能保持良好。  相似文献   

8.
李斌  罗章  孟凡旭  姚薇 《弹性体》2015,(2):7-11
使用二乙基次膦酸铝(ADP-12)并用协效阻燃剂三聚氰胺氰尿酸盐(MCA)制备无卤阻燃丙烯腈-丁二烯-苯乙烯(ABS)复合材料,使用不同增韧剂对阻燃ABS进行增韧改性,对其阻燃性能及力学性能进行了研究。结果表明,填加增韧剂聚醚型聚氨酯(TPU)制备的阻燃ABS合金综合阻燃性能最优,氧指数达到33.6%,垂直燃烧显示出V-1级别;SBS对阻燃ABS增韧效果最好,制备的阻燃苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)/ABS合金力学性能最优,冲击强度、断裂伸长率均比未填加增韧剂的阻燃ABS有所提高;通过偏光显微镜发现,阻燃剂在TPU/ABS合金中阻燃剂分散较好,但仍有团聚现象存在。  相似文献   

9.
以高聚合度聚磷酸铵(APP)为酸源,聚酰胺6(PA6)和改性PA6(MPA6)为炭源,4A分子筛为协效剂,对ABS进行无卤阻燃研究,考察了各试样的氧指数、热失重行为和炭层形貌,同时选用MPA6和乙烯-丙烯酸乙酯-甲基丙烯酸缩水甘油酯三嵌段共聚物(E-MA-GMA)弹性体对阻燃材料进行增韧改性。结果表明:APP/成炭剂PA6及其协效剂4A分子筛组成的无卤阻燃体系能显著改善了ABS树脂的阻燃性能,氧指数达到32%,UL94测试达到V-0级。在此基础上,采用MPA6和E-MA-GMA弹性体改性ABS,复合材料仍然保持较高的阻燃性能,拉伸强度略有下降,缺口冲击强度从3.11 kJ/m2提高到4 kJ/m2。  相似文献   

10.
通过一锅法原位合成了SiO_2纳米粒子改性可膨胀石墨,与未被改性的可膨胀石墨(EG)相比,改性可膨胀石墨(MEG)仍然保留了其片层状结构,石墨片层表面附集了大量的SiO_2纳米粒子。将MEG应用于阻燃ABS,通过垂直燃烧测试(UL 94)、极限氧指数测试(LOI)和力学性能测试研究了MEG对ABS阻燃材料的燃烧特性和力学性能的影响。结果表明,当MEG的质量分数为20%时,ABS/MEG20阻燃复合材料的UL 94水平达V-0级,LOI值达到25.2%,而与此作为对比的ABS/EG20阻燃复合材料持续燃烧,未能通过UL 94测试。增韧剂的添加较大幅度地提高了阻燃ABS复合材料的力学韧性,当增韧剂的质量分数为4%时,ABS/MEG20的力学冲击冲击强度由增韧前的6.0 k J/m~2提高到12.7 k J/m~2,另一方面,复合材料仍保持其优异的阻燃性能;与纯ABS材料相比,阻燃ABS复合材料高温时的热稳定性提高,高温时的残炭量增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号