首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Layered assemblies of photosystem I, PSI, and/or photosystem II, PSII, on ITO electrodes are constructed using a layer‐by‐layer deposition process, where poly N,N′‐dibenzyl‐4,4′‐bipyridinium (poly‐benzyl viologen, PBV2+) is used as an inter‐protein “glue”. While the layered assembly of PSI generates an anodic photocurrent only in the presence of a sacrificial electron donor system, such as dichlorophenol indophenol (DCPIP)/ascorbate, the PSII‐modified electrode leads, upon irradiation, to the formation of an anodic photocurrent (while evolving oxygen), in the absence of any sacrificial component. The photocurrent is generated by transferring the electrons from the PSII units to the PBV2+ redox polymer. The charge‐separated species allow, then, the injection of the electrons to the electrode, with the concomitant evolution of O2. A layered assembly, consisting of a PSI layer attached to a layer of PSII by the redox polymer PBV2+, leads to an anodic photocurrent that is 2‐fold higher, as compared to the anodic photocurrent generated by a PSII‐modified electrode. This observation is attributed to an enhanced charge separation in the two‐photosystem assembly. By the further nano‐engineering of the two photosystems on the electrode using two different redox polymers, vectorial electron transfer to the electrode is demonstrated, resulting in a ca. 6‐fold enhancement in the photocurrent. The reversed bi‐layer assembly, consisting of a PSII layer linked to a layer of PSI by the PBV2+ redox polymer, yields, upon irradiation, an inefficient cathodic current. This observation is attributed to a mixture of photoinduced electron transfer reactions of opposing effects on the photocurrent directions in the two‐photosystem assembly.  相似文献   

2.
Molecularly imprinted Au nanoparticles (NPs) composites are generated on Au-coated glass surfaces. The imprinting process involves the electropolymerization of thioaniline-functionalized Au NPs (3.5 nm) on a thioaniline monolayer-modified Au surface in the presence of a carboxylic acid, acting as a template analogue for the respective explosive. The exclusion of the imprinting template from the Au NPs matrix yields the respective imprinted composites. The binding of the analyte explosives to the Au NPs matrixes is probed by surface plasmon resonance spectroscopy, SPR, where the electronic coupling between the localized plasmon of the Au NPs and the surface plasmon wave leads to the amplification of the SPR responses originating from the dielectric changes of the matrixes upon binding of the different explosive materials. The resulting imprinted matrixes reveal high affinities and selectivity toward the imprinted explosives. Using citric acid as an imprinting template, Au NPs matrixes for the specific analysis of pentaerythritol tetranitrate (PETN) or of nitroglycerin (NG) were prepared, leading to detection limits of 200 fM and 20 pM, respectively. Similarly, using maleic acid or fumaric acid as imprinting templates, high-affinity sensing composites for ethylene glycol dinitrate (EGDN) were synthesized, leading to a detection limit of 400 fM for both matrixes.  相似文献   

3.
A facile chemical bath method is adopted to grow bismuth oxychloride (BiOCl) nanosheet arrays on a piece of Cu foil (denoted as BiOCl‐Cu) and isolated BiOCl nanosheets are collected by ultrasonication. A self‐supporting BiOCl film is obtained by the removal of Cu foil. Photodetectors (PDs) based on these BiOCl materials are assembled and the effects of morphologies and electrode configurations on the photoelectric performance of these PDs are examined. The BiOCl nanosheet PD achieves high responsivities in the spectral range from 250 to 350 nm, while it presents quite a small photocurrent and slow response speed. The BiOCl film PD yields low photocurrents and near‐unity on–off ratios, demonstrating poor photoelectric performance. The photocurrent of the BiOCl‐Cu PD with both electrodes on the BiOCl film is much higher than those of these above‐mentioned PDs, and the response times are fast. Meanwhile, the BiOCl‐Cu PD with separate electrodes on the BiOCl film and Cu foil achieves even higher photocurrents and presents a self‐powering characteristic, depicting the improved photodetecting performances induced by the specific morphology and distinct electrode configuration. These results would promote the applications of BiOCl nanostructures in the photoelectric devices.  相似文献   

4.
A newly developed four-layered photosensing nanodevice was fabricated by integrating nanoparticles (NPs) on a silicon substrate. Through ionic interaction, negatively charged Au NPs (/spl sim/15 nm) were assembled in alternate layers with positively charged CdSe NPs (/spl sim/5 nm) on the silicon oxide surface between the two Al electrodes. The silicon oxide surface after each step of the fabrication process was observed and evaluated by images obtained from the scanning electron microscope. By applying voltage biases across the electrodes, the currents were measured in the dark and under illumination using a 375-nm laser. It was found that a constant photocurrent increment can be obtained for different voltage biases, and the nanodevice structure with a longer length had less conductivity but a larger increment of photocurrent after illumination. In addition, the efficiency rate of photocurrent generation is much higher in comparison to that obtained from CdSe thin film. The fabrication process integrated a newly developed model of a diode-resistor array of semiconductor-metal junctions between CdSe and Au NPs (nano-Schottky-diode structures), which can successfully explain the measured results. While nanotechnology has unprecedented advantages over the traditional silicon electronics, its technology presents physical challenges. However, the success of the fabrication of the multilayered photosensing nanodevice directly on the silicon chip paves the way for further applications and research.  相似文献   

5.
Hypoxia severely impedes photodynamic therapy (PDT) efficiency. Worse still, considerable tumor metastasis will occur after PDT. Herein, an organic superoxide radical (O2??) nano‐photogenerator as a highly effcient type I photosensitizer with robust vascular‐disrupting efficiency to combat these thorny issues is designed. Boron difluoride dipyrromethene (BODIPY)‐vadimezan conjugate (BDPVDA) is synthesized and enwrapped in electron‐rich polymer‐brushes methoxy‐poly(ethylene glycol)‐b‐poly(2‐(diisopropylamino) ethyl methacrylate) (mPEG‐ PPDA) to afford nanosized hydrophilic type I photosensitizer (PBV NPs). Owing to outstanding core–shell intermolecular electron transfer between BDPVDA and mPEG‐PPDA, remarkable O2?? can be produced by PBV NPs under near‐infrared irradiation even in severe hypoxic environment (2% O2), thus to accomplish effective hypoxic‐tumor elimination. Simultaneously, the efficient ester‐bond hydrolysis of BDPVDA in the acidic tumor microenvironment allows vadimezan release from PBV NPs to disrupt vasculature, facilitating the shut‐down of metastatic pathways. As a result, PBV NPs will not only be powerful in resolving the paradox between traditional type II PDT and hypoxia, but also successfully prevent tumor metastasis after type I PDT treatment (no secondary‐tumors found in 70 days and 100% survival rate), enabling enhancement of existing hypoxic‐and‐metastatic tumor treatment.  相似文献   

6.
Sun K  Madsen K  Andersen P  Bao W  Sun Z  Wang D 《Nanotechnology》2012,23(19):194013
We report a systematic study of Si|ZnO and Si|ZnO| metal photocathodes for effective photoelectrochemical cells and hydrogen generation. Both ZnO nanocrystalline thin films and vertical nanowire arrays were studied. Si|ZnO electrodes showed increased cathodic photocurrents due to improved charge separation by the formation of a p/n junction, and Si|ZnO:Al (n(+)-ZnO) and Si|ZnO(N(2)) (thin films prepared in N(2)/Ar gas) lead to a further increase in cathodic photocurrents. Si|ZnONW (nanowire array) photocathodes dramatically increased the photocurrents and thus photoelectrochemical conversion efficiency due to the enhanced light absorption and enlarged surface area. The ZnO film thickness and ZnO nanowire length were important to the enhancements. A thin metal coating on ZnO showed increased photocurrent due to a catalyzed hydrogen evolution reaction and Ni metal showed comparable catalytic activities to those of Pt and Pd. Moreover, photoelectrochemical instability of Si|ZnO electrodes was minimized by metal co-catalysts. Our results indicate that the metal and ZnO on p-type Si serve as co-catalysts for photoelectrochemical water splitting, which can provide a possible low-cost and scalable method to fabricate high efficiency photocathodes for practical applications in clean solar energy harvesting.  相似文献   

7.
Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly of Au and TiO2 nanoparticles (NPs). A chemical bath deposition method was applied to deposit CdSe QDs on TiO2 NP films with and without Au NPs embedded. We observed significant enhancements in photocurrent for the film with Au NPs, in the entire spectral region we studied (350–600 nm). Incident-photon-to-current efficiency (IPCE) data revealed an average enhancement of 50%, and the enhancement was more significant at short wavelength. This substantially improved PEC performance is tentatively attributed to the increased light absorption of CdSe QDs due to light scattering by Au NPs. Interestingly, without QD sensitization, the Au NPs quenched the photocurrent of TiO2 films, due to the dominance of electron trapping over light scattering by Au NPs. The results suggest that metal NPs are potentially useful for improving the photoresponse in PEC cells and possibly in other devices such as solar cells based on QD-sensitized metal oxide nanostructured films. This work demonstrates that metal NPs can serve as light scattering centers, besides functioning as photo-sensitizers and electron traps. The function of metal NPs in a particular nanocomposite film is strongly dependent on their structure and morphology.   相似文献   

8.
2D mesoporous materials fabricated via the assembly of nanoparticles (NPs) not only possess the unique properties of nanoscale building blocks but also manifest additional collective properties due to the interactions between NPs. In this work, reported is a facile and designable way to prepare free‐standing 2D mesoporous gold (Au) superstructures with a honeycomb‐like configuration. During the fabrication process, Au NPs with an average diameter of 5.0 nm are assembled into a superlattice film on a diethylene glycol substrate. Then, a subsequent thermal treatment at 180 °C induces NP attachment, forming the honeycomb‐like ordered mesoporous Au superstructures. Each individual NP connects with three neighboring NPs in the adjacent layer to form a tetrahedron‐based framework. Mesopores confined in the superstructure have a uniform size of 3.5 nm and are arranged in an ordered hexagonal array. The metallic bonding between Au NPs increases the structural stability of architected superstructures, allowing them to be easily transferred to various substrates. In addition, electron energy‐loss spectroscopy experiments and 3D finite‐difference time‐domain simulations reveal that electric field enhancement occurs at the confined mesopores when the superstructures are excited by light, showing their potential in nano‐plasmonic applications.  相似文献   

9.
The paper reports a facile one‐pot synthesis of core@shell nanoparticles (NPs) composed of Au core and graphene oxide nanocolloid (GON) shell. Unique properties of Au NPs and GON can be incorporated into a single nanohybrid structure to provide desirable functions for theranosis such as localized surface plasmon resonance, Raman scattering, amphiphilic surface, and photothermal conversion. Synthesis of Au@GON NPs is achieved by simple one‐pot reaction in aqueous phase utilizing GON as a reducing and stabilizing agent without any additional reducing agent. The zinc phthalocyanine, a photosensitizer, loaded Au@GON NPs show excellent multifunctional properties for combinational treatment of photothermal and photodynamic therapy in addition to Raman bioimaging with low cytotoxicity.  相似文献   

10.
In this work morphological, structural and photoelectrochemical properties of n-type α-Fe2O3 (hematite) thin films synthetized by means of two different electrochemical procedures: potential cycling electrodeposition (PC) and potential pulsed electrodeposition (PP) have been studied. The X-ray diffraction measurements showed that the films obtained after a thermal treatment at 520 °C present a nanocrystalline character. Scanning electron microscopy allowed finding that hematite films obtained by PP technique exhibit nanostructured morphology. The electrochemical and capacitance (Mott-Schottky and parallel capacitance) measurements showed that when in the PC and PP procedures the anodic limit Eλ,A is being made more anodic, a decrease of the majority carriers concentration (ND) and the surface states number has been observed. The photovoltammetry measurements indicated that the hematite films formed with the PP technique present a photocurrent one order of magnitude higher than the ones exhibited by the iron oxide films formed by PC. For instance, PP hematite films exhibit photovoltaic conversion efficiencies of 0.96% which are 2.5 times higher than the corresponding to the PC ones (0.38%). The maximum incident photon-to-current efficiency measured at λ = 370 and 600 nm was observed for hematite films grown by the PP procedure. By means of the photocurrent transient technique a decrease in the recombination process for those samples synthesized by PP was observed. The results obtained are discussed considering the influence of the anodic limit of the potential employed during the preparation of the iron oxyhydroxide (β-FeOOH) precursor film, all of this related to a decrease of the oxygen defects in this material and to a decrease of Fe(II) amount that is formed during the electrodeposition process.  相似文献   

11.
In this study, we synthesize mercury sulfide (HgS) nanoparticles (NPs) by the colloidal method and investigate the optoelectronic characteristics of the resulting HgS NPs-thin films on plastic substrates in air at room temperature. The HgS NPs with a size of about 6-nm show quantum confinement effects in the absorption and photoluminescence spectra of the HgS NPs-thin film. The flexible optoelectronic device is constructed with the HgS NPs-thin film on finger-pattered Au electrodes. When 325-nm wavelength light is irradiated on the HgS NPs-thin film, charge carriers are photogenerated and transported by the hopping mechanism, thereby giving birth to a photocurrent in the film. The photocurrent efficiency at a bias voltage of 5 V is estimated to be 1.6 microA/W x cm2 and the photocurrent efficiency in the 1000 cycles-bending test changes by less than one order of magnitude compared to its initial value before bending.  相似文献   

12.
We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C).  相似文献   

13.
Surface plasmon resonance (SPR) enhancement in photocatalyst and photovoltaics has been widely studied and different enhancement mechanisms have been established based on different heterostructure interface configurations. This work is intended to unveil the mechanisms behind charge or energy transfer in different plasmonic configurations of metal particle–semiconductor interfaces, especially with a dielectric layer. For this purpose, a series of composite photoelectrodes based on anodic TiO2 nanotube (TONT) backbones coated with Au, Al2O3, or both are designed and characterized systematically. In conjunction with both experimental measurements and numerical simulations, it is revealed that in the TONT‐Al2O3‐Au electrode system (i.e., a thin nonconductive spacer between semiconductor and metal), the enhancement is dominantly governed by SPR‐mediated hot‐electron injection rather than conventional‐thought near‐field electromagnetic enhancement. Among all configurations, the TONT‐Au‐Al2O3 electrode shows the best photoresponse in both UV and visible regions. The superior visible light response of the TONT‐Au‐Al2O3 electrode is ascribed to the Al2O3 intensified local electromagnetic field that enhances the hot‐electron injection through the TiO2‐Au interface, and an effective surface passivation by the Al2O3 coating.  相似文献   

14.
The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape‐controlled Au NPs on bismuth vanadate (BiVO4) are studied, and a largely enhanced photoactivity of BiVO4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO4 achieves 2.4 mA cm?2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO4. It is the highest value among the previously reported plasmonic Au NPs/BiVO4. Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape‐controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells.  相似文献   

15.
A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplication occurs at a significantly lower electric field than those of other 2D semiconductor materials. In order to further enhance the quantum efficiency and increase the signal‐to‐noise (S/N) ratio, Au nanoparticles (NPs) are integrated on the BP surface, which improves the light absorption by plasmonic effects. The BP–Au‐NPs structure effectively reduces both dark current (≈10 times lower) and onset of avalanche electric field, leading to higher carrier multiplication, photogain, quantum efficiency, and S/N ratio. For the BP–Au‐NPs APD, it is obtained that the external quantum efficiency (EQE) is 382 and the responsivity is 160 A W‐1 at an electric field of 5 kV cm‐1 (Vd ≈ 3.5 V, note that for the BP APD, EQE = 4.77 and responsivity = 2 A W‐1 obtained at the same electric field). The significantly increased performance of the BP APD is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications, which can enable high‐performance optical communication and imaging systems.  相似文献   

16.
A hexafluorophosphate ionic liquid is used as a functional monomer to prepare a metal–organic framework (Zn‐MOF). Zn‐MOF is used as a template for MoS2 nanosheets synthesis and further carbonized to yield light‐responsive ZnS/C/MoS2 nanocomposites. Zn‐MOF, carbonized‐Zn‐MOF, and ZnS/C/MoS2 nanocomposites are characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X‐ray diffraction pattern, scanning electron microscopy (SEM), element mapping, Raman spectroscopy, X‐ray photoelectron spectroscopy, fluorescence, and nitrogen‐adsorption analysis. Carcinoembryonic antigen (CEA) is selected as a model to construct an immunosensing platform to evaluate the photo‐electrochemical (PEC) performances of ZnS/C/MoS2 nanocomposites. A sandwich‐type PEC immunosensor is fabricated by immobilizing CEA antibody (Ab1) onto the ZnS/C/MoS2/GCE surface, subsequently binding CEA and the alkaline phosphatase‐gold nanoparticle labeled CEA antibody (ALP‐Au‐Ab2). The catalytic conversion of vitamin C magnesium phosphate produces ascorbic acid (AA). Upon being illuminated, AA can react with photogenerated holes from ZnS/C/MoS2 nanocomposites to generate a photocurrent for quantitative assay. Under optimized experimental conditions, the PEC immunosensor exhibits excellent analytical characteristics with a linear range from 2.0 pg mL?1 to 10.0 ng mL?1 and a detection limit of 1.30 pg mL?1 (S/N = 3). The outstanding practicability of this PEC immunosensor is demonstrated by accurate assaying of CEA in clinical serum samples.  相似文献   

17.
《Optical Materials》2003,21(1-3):467-473
The photoelectrochemistry of a series of porphyrins containing an alkyl chain terminated with imidazolyl, is described. Indium–tin oxide electrodes deposited with porphyrins using the Langmuir–Blodgett (LB) technique exhibit high photocurrent values under ambient condition. Action spectra of the photocurrent generation are coincident with the absorption of the LB film-modified electrodes, indicating that the dye aggregates in the LB film are responsible for the photocurrent. The bias voltages that may influence the photocurrent have also been investigated. The photocurrents varied with the side chain length; the compound with a longer chain but not with the shortest chain generated the maximum photocurrent. To interpret such a special case, a possible mechanism is suggested.  相似文献   

18.
19.
In this study, simple, effective and general processes were used for the synthesis of a new nano-molecularly imprinted polymers (MIPs) layer on magnetic Fe3O4 nanoparticles (NPs) with uniform core–shell structure by combining surface imprinting and nanotechniques. The first step for the synthesis of magnetic NPs was co-precipitation of Fe2+ and Fe3+ in an ammonia solution. Then, an SiO2 shell was coated on the magnetic core with the Stöber method. Subsequently, the C=C groups were grafted onto the silica-modified Fe3O4 surface by 3-(trimethoxysilyl) propyl methacrylate. Finally, MIPs films were formed on the surface of Fe3O4@SiO2 by the copolymerization of C=C end groups with methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker), 2,2-azobisisobutyronitrile (initiator) and tizanidine (template molecule). The products were characterized using techniques that included Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), UV spectrophotometry, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Measurement of tizanidine through use of the core–shell magnetic molecularly imprinted polymers nanoparticles (MMIPs-NPs) in human plasma samples compared to the paracetamol showed that the synthesized nanosized MMIP for tizanidine has acted selectively.  相似文献   

20.
On‐chip microsupercapacitors (MSCs) have application in powering microelectronic devices. Most of previous MSCs are made from carbon materials, which have high power but low energy density. In this work, 3D interdigital Au/MnO2/Au stacked MSCs have been fabricated based on laser printed flexible templates. This vertical‐stacked electrode configuration can effectively increase the contact area between MnO2 active layer and Au conductive layer, and thus improve the electron transport and electrolyte ion diffusion, resulting in enhanced pseudocapacitive performance of MnO2. The stacked electrode can achieve an areal capacitance up to 11.9 mF cm?2. Flexible and all‐solid‐state MSCs are assembled based on the sandwich hybrid electrodes and PVA/LiClO4 gel electrolyte and show outstanding high‐rate capacity and mechanical flexibility. The laser printing technique in this work combined with the physical sputtering and electrodeposition allows fabrication of MSC array with random sizes and patterns, making them promising power sources for small‐scale flexible microelectronic energy storage systems (e.g., next‐generation smart phones).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号