首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ingenious design of a freestanding flexible electrode brings the possibility for power sources in emerging wearable electronic devices. Here, reduced graphene oxide (rGO) wraps carbon nanotubes (CNTs) and rGO tightly surrounded by MnO2 nanosheets, forming a 3D multilevel porous conductive structure via vacuum freeze‐drying. The sandwich‐like architecture possesses multiple functions as a flexible anode for lithium‐ion batteries. Micrometer‐sized pores among the continuously waved rGO layers could extraordinarily improve ion diffusion. Nano‐sized pores among the MnO2 nanosheets and CNT/rGO@MnO2 particles could provide vast accessible active sites and alleviate volume change. The tight connection between MnO2 and carbon skeleton could facilitate electron transportation and enhance structural stability. Due to the special structure, the rGO‐wrapped CNT/rGO@MnO2 porous film as an anode shows a high capacity, excellent rate performance, and superior cycling stability (1344.2 mAh g−1 over 630 cycles at 2 A g−1, 608.5 mAh g−1 over 1000 cycles at 7.5 A g−1). Furthermore, the evolutions of microstructure and chemical valence occurring inside the electrode after cycling are investigated to illuminate the structural superiority for energy storage. The excellent electrochemical performance of this freestanding flexible electrode makes it an attractive candidate for practical application in flexible energy storage.  相似文献   

2.
Yarn‐shaped supercapacitors (YSCs) once integrated into fabrics provide promising energy storage solutions to the increasing demand of wearable and portable electronics. In such device format, however, it is a challenge to achieve outstanding electrochemical performance without compromising flexibility. Here, MXene‐based YSCs that exhibit both flexibility and superior energy storage performance by employing a biscrolling approach to create flexible yarns from highly delaminated and pseudocapacitive MXene sheets that are trapped within helical yarn corridors are reported. With specific capacitance and energy and power densities values exceeding those reported for any YSCs, this work illustrates that biscrolled MXene yarns can potentially provide the conformal energy solution for powering electronics beyond just the form factor of flexible YSCs.  相似文献   

3.
4.
A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in‐situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as‐prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high‐performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface‐to‐volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low‐cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices.  相似文献   

5.
In this work, MnO2/GO (graphene oxide) composites with novel multilayer nanoflake structure, and a carbon material derived from Artemia cyst shell with genetic 3D hierarchical porous structure (HPC), are prepared. An asymmetric supercapacitor has been fabricated using MnO2/GO as positive electrode and HPC as negative electrode material. Because of their unique structures, both MnO2/GO composites and HPC exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high voltage range of 0–2 V in aqueous electrolyte, which exhibits maximum energy density of 46.7 Wh kg?1 at a power density of 100 W kg?1 and remains 18.9 Wh kg?1 at 2000 W kg?1. Additionally, such device also shows superior long cycle life along with ~100% capacitance retention after 1000 cycles and ~93% after 4000 cycles.  相似文献   

6.
7.
Single‐wall carbon nanotubes (SWCNTs), especially in the form of large‐area and high‐quality thin films, are a promising material for use in flexible and transparent electronics. Here, a continuous synthesis, deposition, and transfer technique is reported for the fabrication of meter‐scale SWCNT thin films, which have an excellent optoelectrical performance including a low sheet resistance of 65 Ω/? with a transmittance of 90% at a wavelength of 550 nm. Using these SWCNT thin films, high‐performance all‐CNT thin‐film transistors and integrated circuits are demonstrated, including 101‐stage ring oscillators. The results pave the way for the future development of large‐scale, flexible, and transparent electronics based on CNT thin films.  相似文献   

8.
9.
10.
The main challenge for application of solution‐derived carbon nanotubes (CNTs) in high performance field‐effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution‐derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on‐state current Ion of 290 µA µm?1 (Vds = ?1.5 V and Vgs = ?2 V) and peak transconductance gm of 150 µS µm?1, which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT‐based electronics.  相似文献   

11.
12.
Artificial muscles are reported in which reduced graphene oxide (rGO) is trapped in the helical corridors of a carbon nanotube (CNT) yarn. When electrochemically driven in aqueous electrolytes, these coiled CNT/rGO yarn muscles can contract by 8.1%, which is over six times that of the previous results for CNT yarn muscles driven in an inorganic electrolyte (1.3%). They can contract to provide a final stress of over 14 MPa, which is about 40 times that of natural muscles. The hybrid yarn muscle shows a unique catch state, in which 95% of the contraction is retained for 1000 s following charging and subsequent disconnection from the power supply. Hence, they are unlike thermal muscles and natural muscles, which need to consume energy to maintain contraction. Additionally, these muscles can be reversibly cycled while lifting heavy loads.  相似文献   

13.
以化学气相沉积(CVD)法制备的石墨烯和碳纳米管的邻二氯苯分散液为原料, 采用滴涂法制备石墨烯/碳纳米管复合薄膜, 用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱(Raman)和X射线光电子能谱(XPS)对其形貌和结构进行表征。实验发现随着碳纳米管分散液浓度的增大, 复合薄膜结构中碳纳米管的面密度线性增大。利用紫外-可见光谱仪和四探针测试仪表征了不同碳纳米管浓度下复合薄膜的透光率及其薄层电阻, 结果表明: 随着碳纳米管浓度的增大, 复合薄膜的透光率及其薄层电阻都将减小, 当碳纳米管浓度为0.1 mg/mL时, 复合薄膜的透光率(550 nm)及其薄层电阻分别为92.18%和0.998 kΩ/□。实验通过调节碳纳米管浓度制备得到不同性能的石墨烯/碳纳米管复合薄膜, 该复合薄膜在透明电极、场效应晶体管和激光锁模等方面具有潜在应用。  相似文献   

14.
15.
With the serious impact of fossil fuels on the environment and the rapid development of the global economy, the development of clean and usable energy storage devices has become one of the most important themes of sustainable development in the world today. Supercapacitors are a new type of green energy storage device, with high power density, long cycle life, wide temperature range, and both economic and environmental advantages. In many industries, they have enormous application prospects. Electrode materials are an important factor affecting the performance of supercapacitors. MnO2‐based materials are widely investigated for supercapacitors because of their high theoretical capacitance, good chemical stability, low cost, and environmental friendliness. To achieve high specific capacitance and high rate capability, the current best solution is to use MnO2 and carbon composite materials. Herein, MnO2–carbon composite as supercapacitor electrode materials is reviewed including the synthesis method and research status in recent years. Finally, the challenges and future development directions of an MnO2–carbon based supercapacitor are summarized.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号