首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although photothermal therapy (PTT) is preclinically applied in solid tumor treatment, incomplete tumor removal of PTT and heat endurance of tumor cells induces significant tumor relapse after treatment, therefore lowering the therapeutic efficiency of PTT. Herein, a programmable therapeutic strategy that integrates photothermal therapeutic agents (PTAs), DNAzymes, and artificial engineered natural killer (A‐NK) cells for immunotherapy of hepatocellular carcinoma (HCC) is designed. The novel PTAs, termed as Mn‐CONASHs, with 2D structure are synthesized by the coordination of tetrahydroxyanthraquinone and Mn2+ ions. By further adsorbing polyetherimide/DNAzymes on the surface, the DNAzymes@Mn‐CONASHs exhibit excellent light‐to‐heat conversion ability, tumor microenvironment enhanced T1‐MRI guiding ability, and antiheat endurance ability. Furthermore, the artificial engineered NK cells with HCC specific targeting TLS11a‐aptamer decoration are constructed for specifically eliminating any possible residual tumor cells after PTT, to systematically enhance the therapeutic efficacy of PTT and avoid tumor relapse. Taken together, the potential of A‐NK cells combined with antiheat endurance as a powerful strategy for immuno‐enhancing photothermal therapy efficiency of solid tumors is highlighted, and the current strategy might provide promising prospects for cancer therapy.  相似文献   

2.
It is of great importance in drug delivery to fabricate multifunctional nanocarriers with intelligent targeting properties, for cancer diagnosis and therapy. Herein, hollow‐structured CuS@Cu2S@Au nanoshell/satellite nanoparticles are designed and synthesized for enhanced photothermal therapy and photoswitchable targeting theranostics. The remarkably improved photothermal conversion efficiency of CuS@Cu2S@Au under 808 nm near‐infrared (NIR) laser irradiation can be explained by the reduced bandgap and more circuit paths for electron transitions for CuS and Cu2S modified with Au nanoparticles, as calculated by the Vienna ab initio simulation package, based on density functional theory. By modification of thermal‐isomerization RGD targeting molecules and thermally sensitive copolymer on the surface of nanoparticles, the transition of the shielded/unshielded mode of RGD (Arg‐Gly‐Asp) targeting molecules and shrinking of the thermally sensitive polymer by NIR photoactivation can realize a photoswitchable targeting effect. After loading an anticancer drug doxorubicin in the cavity of CuS@Cu2S@Au, the antitumor therapy efficacy is greatly enhanced by combining chemo‐ and photothermal therapy. The reported nanohybrid can also act as a photoacoustic imaging agent and an NIR thermal imaging agent for real‐time imaging, which provides a versatile platform for multifunctional theranostics and stimuli‐responsive targeted cancer therapy.  相似文献   

3.
Photoimmunotherapy can not only effectively ablate the primary tumor but also trigger strong antitumor immune responses against metastatic tumors by inducing immunogenic cell death. Herein, Cu2MoS4 (CMS)/Au heterostructures are constructed by depositing plasmonic Au nanoparticles onto CMS nanosheets, which exhibit enhanced absorption in near‐infrared (NIR) region due to the newly formed mid‐gap state across the Fermi level based on the hybridization between Au 5d orbitals and S 3p orbitals, thus resulting in more excellent photothermal therapy and photodynamic therapy (PDT) effect than single CMS upon NIR laser irradiation. The CMS and CMS/Au can also serve as catalase to effectively relieve tumor hypoxia, which can enhance the therapeutic effect of O2‐dependent PDT. Notably, the NIR laser‐irradiated CMS/Au can elicit strong immune responses via promoting dendritic cells maturation, cytokine secretion, and activating antitumor effector T‐cell responses for both primary and metastatic tumors eradication. Moreover, CMS/Au exhibits outstanding photoacoustic and computed tomography imaging performance owing to its excellent photothermal conversion and X‐ray attenuation ability. Overall, the work provides an imaging‐guided and phototherapy‐induced immunotherapy based on constructing CMS/Au heterostructures for effectively tumor ablation and cancer metastasis inhibition.  相似文献   

4.
Near infrared (NIR) light triggered phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) affords superior outcome in cancer treatment. However, the reactive oxygen species (ROS) generated by NIR‐excited upconversion nanostructure is limited by the feeble upconverted light which cannot activate PDT agents efficiently. Here, an IR‐808 dye sensitized upconversion nanoparticle (UCNP) with a chlorin e6 (Ce6)‐functionalized silica layer is developed for PDT agent. The two booster effectors (dye‐sensitization and core–shell enhancement) synergistically amplify the upconversion efficiency, therefore achieving superbright visible emission under low 808 nm light excitation. The markedly amplified red light subsequently triggers the photosensitizer (Ce6) to produce large amount of ROS for efficient PDT. After the silica is endowed with positive surface, these PDT nanoparticles can be easily grafted on MoS2 nanosheet. As the optimal laser wavelength of UCNPs is consistent with that of MoS2 nanosheet for PTT, the invented nanoplatform generates both abundant ROS and local hyperthermia upon a single 808 nm laser irradiation. Both the in vitro and in vivo assays validate that the innovated nanostructure presents excellent cancer cell inhibition effectiveness by taking advantages of the synergistic PTT and PDT, simultaneously, posing trimodal (upconversion luminescence/computed tomography (CT)/magnetic resonance imaging (MRI) imaging capability.  相似文献   

5.
The unique tumor microenvironment (TME) facilitates cancer proliferation and metastasis, and it is hard to cure cancer completely via monotherapy. Herein, a multifunctional cascade bioreactor based on hollow mesoporous Cu2MoS4 (CMS) loaded with glucose oxidase (GOx) is constructed for synergetic cancer therapy by chemo‐dynamic therapy (CDT)/starvation therapy/phototherapy/immunotherapy. The CMS harboring multivalent elements (Cu1+/2+, Mo4+/6+) exhibit Fenton‐like, glutathione (GSH) peroxidase‐like and catalase‐like activity. Once internalized into the tumor, CMS could generate ·OH for CDT via Fenton‐like reaction and deplete overexpressed GSH in TME to alleviate antioxidant capability of the tumors. Moreover, under hypoxia TME, the catalase‐like CMS could react with endogenous H2O2 to generate O2 for activating the catalyzed oxidation of glucose by GOx for starvation therapy accompanied with the regeneration of H2O2. The regenerated H2O2 can devote to Fenton‐like reaction for realizing GOx‐catalysis‐enhanced CDT. Meanwhile, the CMS under 1064 nm laser irradiation shows remarkable tumor‐killing ability by phototherapy due to its excellent photothermal conversion efficiency (η = 63.3%) and cytotoxic superoxide anion (·O2?) generation performance. More importantly, the PEGylated CMS@GOx‐based synergistic therapy combined with checkpoint blockade therapy could elicit robust immune responses for both effectively ablating primary tumors and inhibiting cancer metastasis.  相似文献   

6.
Targeting is one of the most important strategies for enhancing the efficacy of cancer photothermal therapy (PTT) and reducing damage to surrounding normal tissues. Compared with the traditional targeting approaches, the active targeting of breast cancer cells in PTT using chemotherapeutic drugs, such as tamoxifen (TAM), in combination with single‐molecule photothermal photosensitizers has superior selectivity and therapeutic effects. However, single‐molecule drug‐targeting photosensitizers for improved PTT efficacy are not widely reported. Accordingly, herein, a near‐infrared induced small‐molecule photothermal photosensitizer (CyT) is developed that actively targets the estrogen receptors (ERs) of breast cancer cells as well as targets mitochondria by structure‐inherent targeting. Cell uptake and cytotoxicity studies using different types of cells show that CyT enhances the efficiency of TAM‐based PTT by targeting ER‐overexpressing breast cancer cells and selectively killing them. In vivo experiments demonstrate that CyT can be used as a photothermal agent for fluorescence imaging‐guided PTT. More importantly, the intravenous injection of CyT results in better targeting and efficiency of tumor inhibition compared with that achieved with the TAM‐free control molecule Cy. Thus, the study presents an excellent small‐molecule photothermal agent for breast cancer therapy with potential clinical application prospects.  相似文献   

7.
Radioisotope therapy (RIT), in which radioactive agents are administered or implanted into the body to irradiate tumors from the inside, is a clinically adopted cancer treatment method but still needs improvement to enhance its performances. Herein, it is found that polyethylene glycol (PEG) modified tungsten disulfide (WS2) nanoflakes can be easily labeled by 188Re, a widely used radioisotope for RIT, upon simple mixing. Like other high‐Z elements acting as radiosensitizers, tungsten in the obtained 188Re‐WS2‐PEG would be able to absorb ionization radiation generated from 188Re, enabling ‘‘self‐sensitization’’ to enhance the efficacy of RIT as demonstrated in carefully designed in vitro experiments of this study. In the meanwhile, the strong NIR absorbance of WS2‐PEG could be utilized for NIR light‐induced photothermal therapy (PTT), which if applied on tumors would be able to greatly relieve their hypoxia state and help to overcome hypoxia‐associated radioresistance of tumors. Therefore, with 188Re‐WS2‐PEG as a multifunctional agent, which shows efficient passive tumor homing after intravenous injection, in vivo self‐sensitized, NIR‐enhanced RIT cancer treatment is realized, achieving excellent tumor killing efficacy in a mouse tumor model. This work presents a new concept of applying nanotechnology in RIT, by delivering radioisotopes into tumors, self‐sensitizing the irradiation‐induced cell damage, and modulating the tumor hypoxia state to further enhance the therapeutic outcomes.  相似文献   

8.
Inhomogeneous heating by photothermal therapy (PTT) during cancer treatment often results in the recurrence of tumors. Thus, integrating PTT with chemotherapy (CHT) may provide a complementary treatment for enhanced therapeutic efficiency. Herein, this study develops a hollow structured polymer–silica nanohybrid (HPSN) as a nanocarrier to simultaneously deliver the anticancer drug paclitaxel and photothermal agent palladium phthalocyanine to tumors through enhanced permeation and the retention effect. A combinational CHT/PTT therapy on mice bearing aggressive tumor grafts is conducted. The highly malignant tumor model, which recurs after sole treatment of PTT, can be eradicated by the combined CHT/PTT treatment. In addition, most of the off‐targeted HPSN nanocarriers can be excreted through a hepatobiliary pathway in about 10 d. Serology results show that the fast‐clearable HPSN can significantly reduce the side effect of the loaded paclitaxel drug. The present work provides an alternative approach for combinational cancer treatment with high therapeutic efficiency.  相似文献   

9.
Tumor hypoxia significantly diminishes the efficacy of reactive oxygen species (ROS)‐based therapy, mainly because the generation of ROS is highly oxygen dependent. Recently reported hypoxia‐irrelevant radical initiators (AIBIs) exhibit promising potential for cancer therapy under different oxygen tensions. However, overexpressed glutathione (GSH) in cancer cells would potently scavenge the free radicals produced from AIBI before their arrival to the specific site and dramatically limit the therapeutic efficacy. A synergistic antitumor platform (MoS2@AIBI‐PCM nanoflowers) is constructed by incorporating polyethylene‐glycol‐functionalized molybdenum disulfide (PEG‐MoS2) nanoflowers with azo initiator and phase‐change material (PCM). Under near‐infrared laser (NIR) irradiation, the photothermal feature of PEG‐MoS2 induces the decomposition of AIBI to produce free radicals. Furthermore, PEG‐MoS2 can facilitate GSH oxidation without releasing toxic metal ions, greatly promoting tumor apoptosis and avoiding the introduction of toxic metal ions. This is the first example of the use of intelligent MoS2‐based nanoflowers as a benign GSH scavenger for enhanced cancer treatment.  相似文献   

10.
Near‐infrared (NIR) light is widely used for noninvasive optical diagnosis and phototherapy. However, current research focuses on the first NIR window (NIR‐I, 650–950 nm), while the second NIR window (NIR‐II, 1000–1700 nm) is far less exploited. The development of the first organic photothermal nanoagent (SPNI‐II) with dual‐peak absorption in both NIR windows and its utilization in photothermal therapy (PTT) are reported herein. Such a nanoagent comprises a semiconducting copolymer with two distinct segments that respectively and identically absorb NIR light at 808 and 1064 nm. With the photothermal conversion efficiency of 43.4% at 1064 nm generally higher than other inorganic nanomaterials, SPNI‐II enables superior deep‐tissue heating at 1064 nm over that at 808 nm at their respective safety limits. Model deep‐tissue cancer PTT at a tissue depth of 5 mm validates the enhanced antitumor effect of SPNI‐II when shifting laser irradiation from the NIR‐I to the NIR‐II window. The good biodistribution and facile synthesis of SPNI‐II also allow it to be doped with an NIR dye for fluorescence‐imaging‐guided NIR‐II PTT through systemic administration. Thus, this study paves the way for the development of new polymeric nanomaterials to advance phototherapy.  相似文献   

11.
Previously, a large volume of papers reports that gold nanorods (Au NRs) are able to effectively kill cancer cells upon high laser doses (usually 808 nm, 1–48 W/cm2) irradiation, leading to hyperthermia‐induced destruction of cancer cells, i.e, photothermal therapy (PTT) effects. Combination of Au NRs‐mediated PTT and organic photosensitizers‐mediated photodynamic therapy (PDT) were also reported to achieve synergistic PTT and PDT effects on killing cancer cells. Herein, we demonstrate for the first time that Au NRs alone can sensitize formation of singlet oxygen (1O2) and exert dramatic PDT effects on complete destrcution of tumors in mice under very low LED/laser doses of single photon NIR (915 nm, <130 mW/cm2) light excitation. By changing the NIR light excitation wavelengths, Au NRs‐mediated phototherapeutic effects can be switched from PDT to PTT or combination of both. Both PDT and PTT effects were confirmed by measurements of reactive oxygen species (ROS) and heat shock protein (HSP 70), singlet oxygen sensor green (SOSG) sensing, and sodium azide quenching in cellular experiments. In vivo mice experiments further show that the PDT effect via irradiation of Au NRs by 915 nm can destruct the B16F0 melanoma tumor in mice far more effectively than doxorubicin (a clinically used anti‐cancer drug) as well as the PTT effect (via irradiation of Au NRs by 780 nm light). In addition, we show that Au NRs can emit single photon‐induced fluorescence to illustrate their in vivo locations/distribution.  相似文献   

12.
The conventional approach in cancer nanomedicine involves advanced drug nanocarriers delivering preloaded therapeutics to targeted tumor sites to maximize drug efficiency. However, both cancer drugs and nanocarriers inevitably produce side effects and systemic toxicity. Herein, hemoglobin nanocrystals (HbC) as drug-free theranostic nanoformulations with the tumor microenvironment (TME) activated diagnostic and therapeutic abilities towards colon tumors are introduced. HbC can release Fe2+ oxidized to Fe3+ in the Fenton reaction with tumor endogenous H2O2, concurrently with the generation of cytotoxic hydroxyl radicals (•OH) that allow for chemodynamic therapy (CDT). Furthermore, in situ-produced Fe3+ reacts with colon tumor-abundant H2S, resulting in the production of Fe1−xS, which provides magnetic resonance imaging (MRI) contrast and allows for NIR light-inducible photothermal therapy (PTT). In vitro and in vivo studies revealed that HbC produced CDT towards 4T1 tumors, and MRI-guided, synergistically enhanced combination of CDT and PTT against H2S abundant colon tumors (CT26), with negligible toxicity towards normal tissues, enlightening HbC as highly efficient and biocompatible TME activated theranostic nanoplatform specific against colon cancer without any traditional drugs and drug carriers.  相似文献   

13.
Reduced graphene oxide nanomesh (rGONM), as one of the recent structures of graphene with a surprisingly strong near‐infrared (NIR) absorption, is used for achieving ultraefficient photothermal therapy. First, by using TiO2 nanoparticles, graphene oxide nanoplatelets (GONPs) are transformed into GONMs through photocatalytic degradation. Then rGONMs functionalized by polyethylene glycol (PEG), arginine–glycine–aspartic acid (RGD)‐based peptide, and cyanine 7 (Cy7) are utilized for in vivo tumor targeting and fluorescence imaging of human glioblastoma U87MG tumors having ανβ3 integrin receptors, in mouse models. The rGONM‐PEG suspension (1 μg mL?1) exhibits about 4.2‐ and 22.4‐fold higher NIR absorption at 808 nm than rGONP‐PEG and graphene oxide (GO) with lateral dimensions of ≈60 nm and ≈2 μm. In vivo fluorescence imaging demonstrates high selective tumor uptake of rGONM‐PEG‐Cy7‐RGD in mice bearing U87MG cells. The excellent NIR absorbance and tumor targeting of rGONM‐PEG‐Cy7‐RGD results in an ultraefficient photothermal therapy (100% tumor elimination 48 h after intravenous injection of an ultralow concentration (10 μg mL?1) of rGONM‐PEG‐Cy7‐RGD followed by irradiation with an ultralow laser power (0.1 W cm?2) for 7 min), whereas the corresponding rGO‐ and rGONP‐based composites do not present remarkable treatments under the same conditions. All the mice treated by rGONM‐PEG‐Cy7‐RGD survived over 100 days, whereas the mice treated by other usual rGO‐based composites were dead before 38 days. The results introduce rGONM as one of the most promising nanomaterials in developing highly desired ultraefficient photothermal therapy.  相似文献   

14.
Recently, the development of multifunctional theranostic nanoplatforms to realize tumor‐specific imaging and enhanced cancer therapy via responding or modulating the tumor microenvironment (TME) has attracted tremendous interests in the field of nanomedicine. Herein, tungsten disulfide (WS2) nanoflakes with their surface adsorbed with iron oxide nanoparticles (IONPs) via self‐assembly are coated with silica and then subsequently with manganese dioxide (MnO2), on to which polyethylene glycol (PEG) is attached. The obtained WS2‐IO/S@MO‐PEG appears to be highly sensitive to pH, enabling tumor pH‐responsive magnetic resonance imaging with IONPs as the pH‐inert T2 contrast probe and MnO2 as the pH‐sensitive T1 contrast probe. Meanwhile, synergistic combination tumor therapy is realized with such WS2‐IO/S@MO‐PEG, by utilizing the strong near‐infrared light and X‐ray absorbance of WS2 for photothermal therapy (PTT) and enhanced cancer radiotherapy (RT), respectively, as well as the ability of MnO2 to decompose tumor endogenous H2O2 and relieve tumor hypoxia to further overcome hypoxia‐associated radiotherapy resistance. The combination of PTT and RT with WS2‐IO/S@MO‐PEG results in a remarkable synergistic effect to destruct tumors. This work highlights the promise of developing multifunction nanocomposites for TME‐specific imaging and TME modulation, aiming at precision cancer synergistic treatment.  相似文献   

15.
Conjugated polymers (CPs) with strong near‐infrared (NIR) absorption and high heat conversion efficiency have emerged as a new generation of photothermal therapy (PTT) agents for cancer therapy. An efficient strategy to design NIR absorbing CPs with good water dispersibility is essential to achieve excellent therapeutic effect. In this work, poly[9,9‐bis(4‐(2‐ethylhexyl)phenyl)fluorene‐alt‐co‐6,7‐bis(4‐(hexyloxy)phenyl)‐4,9‐di(thiophen‐2‐yl)‐thiadiazoloquinoxaline] (PFTTQ) is synthesized through the combination of donor–acceptor moieties by Suzuki polymerization. PFTTQ nanoparticles (NPs) are fabricated through a precipitation approach using 1,2‐distearoyl‐ sn ‐glycero‐3‐phosphoethanolamine‐N‐[methoxy(polyethylene glycol)‐2000] (DSPE‐PEG2000) as the encapsulation matrix. Due to the large NIR absorption coefficient (3.6 L g‐1 cm‐1), the temperature of PFTTQ NP suspension (0.5 mg/mL) could be rapidly increased to more than 50 °C upon continuous 808 nm laser irradiation (0.75 W/cm2) for 5 min. The PFTTQ NPs show good biocompatibility to both MDA‐MB‐231 cells and Hela cells at 400 μg/mL of NPs, while upon laser irradiation, effective cancer cell killing is observed at a NP concentration of 50 μg/mL. Moreover, PFTTQ NPs could efficiently ablate tumor in in vivo study using a Hela tumor mouse model. Considering the large amount of NIR absorbing CPs available, the general encapsulation strategy will enable the development of more efficient PTT agents for cancer or tumor therapy.  相似文献   

16.
Fabrication of clinically translatable nanoparticles (NPs) as photothermal therapy (PTT) agents against cancer is becoming increasingly desirable, but still challenging, especially in facile and controllable synthesis of biocompatible NPs with high photothermal efficiency. A new strategy which uses protein as both a template and a sulfur provider is proposed for facile, cost‐effective, and large‐scale construction of biocompatible metal sulfide NPs with controlled structure and high photothermal efficiency. Upon mixing proteins and metal ions under alkaline conditions, the metal ions can be rapidly coordinated via a biuret‐reaction like process. In the presence of alkali, the inert disulfide bonds of S‐rich proteins can be activated to react with metal ions and generate metal sulfide NPs under gentle conditions. As a template, the protein can confine and regulate the nucleation and growth of the metal sulfide NPs within the protein formed cavities. Thus, the obtained metal sulfides such as Ag2S, Bi2S3, CdS, and CuS NPs are all with small size and coated with proteins, affording them biocompatible surfaces. As a model material, CuS NPs are evaluated as a PTT agent for cancer treatment. They exhibit high photothermal efficiency, high stability, water solubility, and good biocompatibility, making them an excellent PTT agent against tumors. This work paves a new avenue toward the synthesis of structure‐controlled and biocompatible metal sulfide NPs, which can find wide applications in biomedical fields.  相似文献   

17.
The tumor microenvironment (TME) has been increasingly recognized as a crucial contributor to tumorigenesis. Based on the unique TME for achieving tumor‐specific therapy, here a novel concept of photothermal‐enhanced sequential nanocatalytic therapy in both NIR‐I and NIR‐II biowindows is proposed, which innovatively changes the condition of nanocatalytic Fenton reaction for production of highly efficient hydroxyl radicals (?OH) and consequently suppressing the tumor growth. Evidence suggests that glucose plays a vital role in powering cancer progression. Encouraged by the oxidation of glucose to gluconic acid and H2O2 by glucose oxidase (GOD), an Fe3O4/GOD‐functionalized polypyrrole (PPy)‐based composite nanocatalyst is constructed to achieve diagnostic imaging‐guided, photothermal‐enhanced, and TME‐specific sequential nanocatalytic tumor therapy. The consumption of intratumoral glucose by GOD leads to the in situ elevation of the H2O2 level, and the integrated Fe3O4 component then catalyzes H2O2 into highly toxic ?OH to efficiently induce cancer‐cell death. Importantly, the high photothermal‐conversion efficiency (66.4% in NIR‐II biowindow) of the PPy component elevates the local tumor temperature in both NIR‐I and NIR‐II biowindows to substaintially accelerate and improve the nanocatalytic disproportionation degree of H2O2 for enhancing the nanocatalytic‐therapeutic efficacy, which successfully achieves a remarkable synergistic anticancer outcome with minimal side effects.  相似文献   

18.
A multifunctional theranostic platform based on conjugated polymer nanoparticles (CPNs) with tumor targeting, fluorescence detection, photodynamic therapy (PDT), and photothermal therapy (PTT) is developed for effective cancer imaging and therapy. Two conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)‐ethyl)fluorenyldivinylene]‐alt‐4,7‐(2,1,3‐benzothiadiazole) with bright red emission and photosensitizing ability and poly[(4,4,9,9‐tetrakis(4‐(octyloxy)phenyl)‐4,9‐dihydro‐s‐indacenol‐dithiophene‐2,7‐diyl)‐alt‐co‐4,9‐bis(thiophen‐2‐yl)‐6,7‐bis(4‐(hexyloxy)phenyl)‐thiadiazolo‐quinoxaline] with strong near‐infrared absorption and excellent photothermal conversion ability are co‐loaded into one single CPN via encapsulation approach using lipid‐polyethylene glycol as the matrix. The obtained co‐loaded CPNs show sizes of around 30 nm with a high singlet oxygen quantum yield of 60.4% and an effective photothermal conversion efficiency of 47.6%. The CPN surface is further decorated with anti‐HER2 affibody, which bestows the resultant anti‐HER2‐CPNs superior selectivity toward tumor cells with HER2 overexpression both in vitro and in vivo. Under light irradiation, the PDT and PTT show synergistic therapeutic efficacy, which provides new opportunities for the development of multifunctional biocompatible organic materials in cancer therapy.  相似文献   

19.
Photoacoustic imaging‐guided photothermal therapy in the second near‐infrared (NIR‐II) window shows promise for clinical deep‐penetrating tumor phototheranostics. However, ideal photothermal agents in the NIR‐II window are still rare. Here, the emeraldine salt of polyaniline (PANI‐ES), especially synthesized by a one‐pot enzymatic reaction on sodium bis(2‐ethylhexyl) sulfosuccinate (AOT) vesicle surface (PANI‐ES@AOT, λmax ≈ 1000 nm), exhibits excellent dispersion in physiological environment and remarkable photothermal ability at pH 6.5 (photothermal conversion efficiency of 43.9%). As a consequence of the enhanced permeability and retention effect of tumors and the doping‐induced photothermal effect of PANI‐ES@AOT, this pH‐sensitive NIR‐II photothermal agent allows tumor acidity phototheranostics with minimized pseudosignal readout and subdued normal tissue damage. Moreover, the enhanced fluidity of vesicle membrane triggered by heating is beneficial for drug release and allows precise synergistic therapy for an improved therapeutic effect. This study highlights the potential of template‐oriented (or interface‐confined) enzymatic polymerization reactions for the construction of conjugated polymers with desired biomedical applications.  相似文献   

20.
Gold–silver nanocages (GSNCs) are widely used in cancer imaging and therapy due to excellent biocompatibility, internal hollow structures, and tunable optical properties. However, their possible responses toward the tumor microenvironment are still not well understood. In this study, it is demonstrated that a kind of relatively small sized (35 nm) and partially hollow GSNCs (absorbance centered at 532 nm) can enhance the intrinsic photoacoustic imaging performances for blood vessels around tumor sites. More importantly, the high concentration of glutathione around the tumor cells' microenvironment may induce the aggregation, disintegration, and agglomeration of these GSNCs sequentially, allowing significant shifts in the absorbance spectrum of GSNCs to the near‐infrared (NIR) region. This enhanced absorbance in the NIR region entails the significant photothermal therapy (PTT) effect. In vivo experiments, including photoacoustic microscopy (PAM) for cancer diagnosis and PTT in tumor model mice, also show coincident consequences. Taken together, the slightly hollow GSNCs may assist PAM‐based tumor diagnosis and induce a tumor targeted PTT effect. This work paves a new avenue for the development of an alternative tumor diagnostic and therapeutic strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号