共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
3.
4.
5.
6.
Zhengsheng Qin Haikuo Gao Jinyu Liu Ke Zhou Jie Li Yangyang Dang Le Huang Huixiong Deng Xiaotao Zhang Huanli Dong Wenping Hu 《Advanced materials (Deerfield Beach, Fla.)》2019,31(37)
Construction of high‐performance organic light‐emitting transistors (OLETs) remains challenging due to the limited desired organic semiconductor materials. Here, two superior high mobility emissive organic semiconductors, 2,6‐diphenylanthracene (DPA) and 2,6‐di(2‐naphthyl) anthracene (dNaAnt), are introduced into the construction of OLETs. By optimizing the device geometry for balanced ambipolar efficient charge transport and using high‐quality DPA and dNaAnt single crystals as active layers, high‐efficiency single‐component OLETs are successfully fabricated, with the demonstration of strong and spatially controlled light emission within both p‐ and n‐ conducting channels and output of high external quantum efficiency (EQE). The obtained EQE values in current devices are approaching 1.61% for DPA‐OLETs and 1.75% for dNaAnt‐based OLETs, respectively, which are the highest EQE values for single‐component OLETs in the common device configuration reported so far. Moreover, high brightnesses of 1210 and 3180 cd m?2 with current densities up to 1.3 and 8.4 kA cm?2 are also achieved for DPA‐ and dNaAnt‐based OLETs, respectively. These results demonstrate the great potential applications of high mobility emissive organic semiconductors for next‐generation rapid development of high‐performance single‐component OLETs and their related organic integrated electro‐optical devices. 相似文献
7.
8.
Shufen Chen Lingling Deng Jun Xie Ling Peng Linghai Xie Quli Fan Wei Huang 《Advanced materials (Deerfield Beach, Fla.)》2010,22(46):5227-5239
Organic light‐emitting diodes (OLEDs) have rapidly progressed in recent years due to their unique characteristics and potential applications in flat panel displays. Significant advancements in top‐emitting OLEDs have driven the development of large‐size screens and microdisplays with high resolution and large aperture ratio. After a brief introduction to the architecture and types of top‐emitting OLEDs, the microcavity theory typically used in top‐emitting OLEDs is described in detail here. Then, methods for producing and understanding monochromatic (red, green, and blue) and white top‐emitting OLEDs are summarized and discussed. Finally, the status of display development based on top‐emitting OLEDs is briefly addressed. 相似文献
9.
10.
11.
12.
Degradation in organic light‐emitting diodes (OLEDs) is a complex problem. Depending upon the materials and the device architectures used, the degradation mechanism can be very different. In this Progress Report, using examples in both small molecule and polymer OLEDs, the different degradation mechanisms in two types of devices are examined. Some of the extrinsic and intrinsic degradation mechanisms in OLEDs are reviewed, and recent work on degradation studies of both small‐molecule and polymer OLEDs is presented. For small‐molecule OLEDs, the operational degradation of exemplary fluorescent devices is dominated by chemical transformations in the vicinity of the recombination zone. The accumulation of degradation products results in coupled phenomena of luminance‐efficiency loss and operating‐voltage rise. For polymer OLEDs, it is shown how the charge‐transport and injection properties affect the device lifetime. Further, it is shown how the charge balance is controlled by interlayers at the anode contact, and their effects on the device lifetime are discussed. 相似文献
13.
14.
15.
Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light‐Emitting Diodes 下载免费PDF全文
The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low‐cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light‐emitting diode (OLED) and related EL devices. TADF emitters are cross‐compared within specific color ranges, with a focus on blue, green–yellow, orange–red, and white OLEDs. Organic small‐molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs. 相似文献
16.
25th Anniversary Article: Organic Field‐Effect Transistors: The Path Beyond Amorphous Silicon 下载免费PDF全文
Henning Sirringhaus 《Advanced materials (Deerfield Beach, Fla.)》2014,26(9):1319-1335
Over the past 25 years, organic field‐effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3–4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field‐effect transistors with performance that clearly exceeds that of benchmark amorphous silicon‐based devices. In this article, state‐of‐the‐art in OFETs are reviewed in light of requirements for demanding future applications, in particular active‐matrix addressing for flexible organic light‐emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field‐effect mobilities exceeding > 1 cm2 V–1 s–1 have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future. 相似文献
17.
18.
19.
20.
J. Zaumseil C.L. Donley J.‐S. Kim R.H. Friend H. Sirringhaus 《Advanced materials (Deerfield Beach, Fla.)》2006,18(20)
The inside cover shows light emission from within the channel of an ambipolar field‐effect transistor based on the green‐light‐emitting conjugated polymer F8BT in a bottom contact/top gate structure, as reported by Sirringhaus and co‐workers on p. 2708. It visually demonstrates the formation of separate electron and hole accumulation layers in ambipolar transistors and radiative recombination of charge carriers where the two layers meet (schematic), which is controlled by the applied voltages. 相似文献