首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vascular network is a central component of the organ‐on‐a‐chip system to build a 3D physiological microenvironment with controlled physical and biochemical variables. Inspired by ubiquitous biological systems such as leaf venation and circulatory systems, a fabrication strategy is devised to develop a biomimetic vascular system integrated with freely designed chambers, which function as niches for chamber‐specific vascularized organs. As a proof of concept, a human‐on‐leaf‐chip system with biomimetic multiscale vasculature systems connecting the self‐assembled 3D vasculatures in chambers is fabricated, mimicking the in vivo complex architectures of the human cardiovascular system connecting vascularized organs. Besides, two types of vascularized organs are built independently within the two halves of the system to verify its feasibility for conducting comparative experiments for organ‐specific metastasis studies in a single chip. Successful culturing of human hepatoma G2 cells (HepG2s) and mesenchymal stem cells (MSCs) with human umbilical vein endothelial cells (HUVECs) shows good vasculature formation, and organ‐specific metastasis is simulated through perfusion of pancreatic cancer cells and shows distinct cancer encapsulation by MSCs, which is absent in HepG2s. Given good culture efficacy, study design flexibility, and ease of modification, these results show that the bioinspired human‐on‐leaf‐chip possesses great potential in comparative and metastasis studies while retaining organ‐to‐organ crosstalk.  相似文献   

2.
The role of skin in the human body is indispensable, serving as a barrier, moderating homeostatic balance, and representing a pronounced endpoint for cosmetics and pharmaceuticals. Despite the extensive achievements of in vitro skin models, they do not recapitulate the complexity of human skin; thus, there remains a dependence on animal models during preclinical drug trials, resulting in expensive drug development with high failure rates. By imparting a fine control over the microenvironment and inducing relevant mechanical cues, skin‐on‐a‐chip (SoC) models have circumvented the limitations of conventional cell studies. Enhanced barrier properties, vascularization, and improved phenotypic differentiation have been achieved by SoC models; however, the successful inclusion of appendages such as hair follicles and sweat glands and pigmentation relevance have yet to be realized. The present Review collates the progress of SoC platforms with a focus on their fabrication and the incorporation of mechanical cues, sensors, and blood vessels.  相似文献   

3.
Organ‐on‐a‐chip platforms seek to recapitulate the complex microenvironment of human organs using miniaturized microfluidic devices. Besides modeling healthy organs, these devices have been used to model diseases, yielding new insights into pathophysiology. Hutchinson‐Gilford progeria syndrome (HGPS) is a premature aging disease showing accelerated vascular aging, leading to the death of patients due to cardiovascular diseases. HGPS targets primarily vascular cells, which reside in mechanically active tissues. Here, a progeria‐on‐a‐chip model is developed and the effects of biomechanical strain are examined in the context of vascular aging and disease. Physiological strain induces a contractile phenotype in primary smooth muscle cells (SMCs), while a pathological strain induces a hypertensive phenotype similar to that of angiotensin II treatment. Interestingly, SMCs derived from human induced pluripotent stem cells of HGPS donors (HGPS iPS‐SMCs), but not from healthy donors, show an exacerbated inflammatory response to strain. In particular, increased levels of inflammation markers as well as DNA damage are observed. Pharmacological intervention reverses the strain‐induced damage by shifting gene expression profile away from inflammation. The progeria‐on‐a‐chip is a relevant platform to study biomechanics in vascular biology, particularly in the setting of vascular disease and aging, while simultaneously facilitating the discovery of new drugs and/or therapeutic targets.  相似文献   

4.
“After a certain high level of technical skill is achieved, science and art tend to coalesce in aesthetics, plasticity, and form. The greatest scientists are always artists as well.” said Albert Einstein. Currently, photographic images bridge the gap between microfluidic/lab‐on‐a‐chip devices and art. However, the microfluidic chip itself should be a form of art. Here, novel vibrant epoxy dyes are presented in combination with a simple process to fill and preserve microfluidic chips, to produce microfluidic art or art‐on‐a‐chip. In addition, this process can be used to produce epoxy dye patterned substrates that preserve the geometry of the microfluidic channels—height within 10% of the mold master. This simple approach for preserving microfluidic chips with vibrant, colorful, and long‐lasting epoxy dyes creates microfluidic chips that can easily be visualized and photographed repeatedly, for at least 11 years, and hence enabling researchers to showcase their microfluidic chips to potential graduate students, investors, and collaborators.  相似文献   

5.
Miniaturized laboratories on chip platforms play an important role in handling life sciences studies. The platforms may contain static or dynamic biological cells. Examples are a fixed medium of an organ‐on‐a‐chip and individual cells moving in a microfluidic channel, respectively. Due to feasibility of control or investigation and ethical implications of live targets, both static and dynamic cell‐on‐chip platforms promise various applications in biology. To extract necessary information from the experiments, the demand for direct monitoring is rapidly increasing. Among different microscopy methods, optical imaging is a straightforward choice. Considering light interaction with biological agents, imaging signals may be generated as a result of scattering or emission effects from a sample. Thus, optical imaging techniques could be categorized into scattering‐based and emission‐based techniques. In this review, various optical imaging approaches used in monitoring static and dynamic platforms are introduced along with their optical systems, advantages, challenges, and applications. This review may help biologists to find a suitable imaging technique for different cell‐on‐chip studies and might also be useful for the people who are going to develop optical imaging systems in life sciences studies.  相似文献   

6.
Cancer is one of the leading causes of death worldwide, despite the large efforts to improve the understanding of cancer biology and development of treatments. The attempts to improve cancer treatment are limited by the complexity of the local milieu in which cancer cells exist. The tumor microenvironment (TME) consists of a diverse population of tumor cells and stromal cells with immune constituents, microvasculature, extracellular matrix components, and gradients of oxygen, nutrients, and growth factors. The TME is not recapitulated in traditional models used in cancer investigation, limiting the translation of preliminary findings to clinical practice. Advances in 3D cell culture, tissue engineering, and microfluidics have led to the development of “cancer‐on‐a‐chip” platforms that expand the ability to model the TME in vitro and allow for high‐throughput analysis. The advances in the development of cancer‐on‐a‐chip platforms, implications for drug development, challenges to leveraging this technology for improved cancer treatment, and future integration with artificial intelligence for improved predictive drug screening models are discussed.  相似文献   

7.
Bone metastasis occurs at ≈70% frequency in metastatic breast cancer. The mechanisms used by tumors to hijack the skeleton, promote bone metastases, and confer therapeutic resistance are poorly understood. This has led to the development of various bone models to investigate the interactions between cancer cells and host bone marrow cells and related physiological changes. However, it is challenging to perform bone studies due to the difficulty in periodic sampling. Herein, a bone‐on‐a‐chip (BC) is reported for spontaneous growth of a 3D, mineralized, collagenous bone tissue. Mature osteoblastic tissue of up to 85 µm thickness containing heavily mineralized collagen fibers naturally formed in 720 h without the aid of differentiation agents. Moreover, co‐culture of metastatic breast cancer cells is examined with osteoblastic tissues. The new bone‐on‐a‐chip design not only increases experimental throughput by miniaturization, but also maximizes the chances of cancer cell interaction with bone matrix of a concentrated surface area and facilitates easy, frequent observation. As a result, unique hallmarks of breast cancer bone colonization, previously confirmed only in vivo, are observed. The spontaneous 3D BC keeps the promise as a physiologically relevant model for the in vitro study of breast cancer bone metastasis.  相似文献   

8.
Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography‐based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three‐step process, a 3D cancer model that mimics cell–cell and cell–extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ‐on‐a‐chip and other biological experimental platforms amenable to long‐term observation of dynamic events using advanced imaging and analytical techniques.  相似文献   

9.
The considerable advances that have been made in the development of organotypic cultures have failed to overcome the challenges of expressing tissue‐specific functions and complexities, especially for organs that require multitasking and complex biological processes, such as the liver. Primary liver cells are ideal biological building blocks for functional organotypic reconstruction, but are limited by their rapid loss of physiological integrity in vitro. Here the concept of lattice growth used in material science is applied to develop a tissue incubator, which provides physiological cues and controls the 3D assembly of primary cells. The cues include a biological growing template, spatial coculture, biomimetic radial flow, and circulation in a scaffold‐free condition. The feasibility of recapitulating a multiscale physiological structural hierarchy, complex drug clearance, and zonal physiology from the cell to tissue level in long‐term cultured liver‐on‐a‐chip is demonstrated. These methods are promising for future applications in pharmacodynamics and personal medicine.  相似文献   

10.
Significant advances in materials, microscale technology, and stem cell biology have enabled the construction of 3D tissues and organs, which will ultimately lead to more effective diagnostics and therapy. Organoids and organs‐on‐a‐chip (OOC), evolved from developmental biology and bioengineering principles, have emerged as major technological breakthrough and distinct model systems to revolutionize biomedical research and drug discovery by recapitulating the key structural and functional complexity of human organs in vitro. There is growing interest in the development of functional biomaterials, especially hydrogels, for utilization in these promising systems to build more physiologically relevant 3D tissues with defined properties. The remarkable properties of defined hydrogels as proper extracellular matrix that can instruct cellular behaviors are presented. The recent trend where functional hydrogels are integrated into organoids and OOC systems for the construction of 3D tissue models is highlighted. Future opportunities and perspectives in the development of advanced hydrogels toward accelerating organoids and OOC research in biomedical applications are also discussed.  相似文献   

11.
A microfluidic polymer chip for the self‐assembly of DNA conjugates through DNA‐directed immobilization is developed. The chip is fabricated from two parts, one of which contains a microfluidic channel produced from poly(dimethylsiloxane) (PDMS) by replica‐casting technique using a mold prepared by photolithographic techniques. The microfluidic part is sealed by covalent bonding with a chemically activated glass slide containing a DNA oligonucleotide microarray. The dimension of the PDMS–glass microfluidic chip is equivalent to standard microscope slides (76 × 26 mm2). The DNA microarray surface inside the microfluidic channels is configured through conventional spotting, and the resulting DNA patches can be conveniently addressed with compounds containing complementary DNA tags. To demonstrate the utility of the addressable surface within the microfluidic channel, DNA‐directed immobilization (DDI) of DNA‐modified gold nanoparticles (AuNPs) and DNA‐conjugates of the enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP) are carried out. DDI of AuNPs is used to demonstrate site selectivity and reversibility of the surface‐modification process. In the case of the DNA–enzyme conjugates, the patterned assembly of the two enzymes allows the establishment and investigation of the coupled reaction of GOx and HRP, with particular emphasis on surface coverage and lateral flow rates. The results demonstrate that this addressable chip is well suited for the generation of fluidically coupled multi‐enzyme microreactors.  相似文献   

12.
The present work reports the first demonstration of straightforward fabrication of monolithic unibody lab‐on‐a‐chip (ULOCs) integrating bioactive micrometric 3D scaffolds by means of multimaterial stereolithography (SL). To this end, a novel biotin‐conjugated photopolymer is successfully synthesized and optimally formulated to achieve high‐performance SL‐printing resolution, as demonstrated by the SL‐fabrication of biotinylated structures smaller than 100 µm. By optimizing a multimaterial single‐run SL‐based 3D‐printing process, such biotinylated microstructures are incorporated within perfusion microchambers whose excellent optical transparency enables real‐time optical microscopy analyses. Standard biotin‐binding assays confirm the existence of biotin‐heads on the surfaces of the embedded 3D microstructures and allow to demonstrate that the biofunctionality of biotin is not altered during the SL‐printing, thus making it exploitable for further conjugation with other biomolecules. As a step forward, an in‐line optical detection system is designed, prototyped via SL‐printing and serially connected to the perfusion microchambers through customized world‐to‐chip connectors. Such detection system is successfully employed to optically analyze the solution flowing out of the microchambers, thus enabling indirect quantification of the concentration of target interacting biomolecules. The successful application of this novel biofunctional photopolymer as SL‐material enables to greatly extend the versatility of SL to directly fabricate ULOCs with intrinsic biofunctionality.  相似文献   

13.
Vascular systems are responsible for various physiological and pathological processes related to all organs in vivo, and the survival of engineered tissues for enough nutrient supply in vitro. Thus, biomimetic vascularization is highly needed for constructing both a biomimetic organ model and a reliable engineered tissue. However, many challenges remain in constructing vascularized tissues, requiring the combination of suitable biomaterials and engineering techniques. In this review, the advantages of hydrogels on building engineered vascularized tissues are discussed and recent engineering techniques for building perfusable microchannels in hydrogels are summarized, including micromolding, 3D printing, and microfluidic spinning. Furthermore, the applications of these perfusable hydrogels in manufacturing organ‐on‐a‐chip devices and transplantable engineered tissues are highlighted. Finally, current challenges in recapitulating the complexity of native vascular systems are discussed and future development of vascularized tissues is prospected.  相似文献   

14.
Targeting pharmaceuticals through the endothelial barrier is crucial for drug delivery. In this context, cavitation‐assisted permeation shows promise for effective and reversible opening of intercellular junctions. A vessel‐on‐a‐chip is exploited to investigate and quantify the effect of ultrasound‐excited microbubbles—stable cavitation—on endothelial integrity. In the vessel‐on‐a‐chip, the endothelial cells form a complete lumen under physiological shear stress, resulting in intercellular junctions that exhibit barrier functionality. Immunofluorescence microscopy is exploited to monitor vascular integrity following vascular endothelial cadherin staining. It is shown that microbubbles amplify the ultrasound effect, leading to the formation of interendothelial gaps that cause barrier permeabilization. The total gap area significantly increases with pressure amplitude compared to the control. Gap opening is fully reversible with gap area distribution returning to the control levels 45 min after insonication. The proposed integrated platform allows for precise and repeatable in vitro measurements of cavitation‐enhanced endothelium permeability and shows potential for validating irradiation protocols for in vivo applications.  相似文献   

15.
The development of self‐powered electronic systems requires integration of on‐chip energy‐storage units to interface with various types of energy harvesters, which are intermittent by nature. Most studies have involved on‐chip electrochemical microsupercapacitors that have been interfaced with energy harvesters through bulky Si‐based rectifiers that are difficult to integrate. This study demonstrates transistor‐level integration of electrochemical microsupercapacitors and thin film transistor rectifiers. In this approach, the thin film transistors, thin film rectifiers, and electrochemical microsupercapacitors share the same electrode material for all, which allows for a highly integrated electrochemical on‐chip storage solution. The thin film rectifiers are shown to be capable of rectifying AC signal input from either triboelectric nanogenerators or standard function generators. In addition, electrochemical microsupercapacitors exhibit exceptionally slow self‐discharge rate (≈18.75 mV h?1) and sufficient power to drive various electronic devices. This study opens a new avenue for developing compact on‐chip electrochemical micropower units integrated with thin film electronics.  相似文献   

16.
The continuous increasing of engineered nanomaterials (ENMs) in our environment, their combinatorial diversity, and the associated genotoxic risks, highlight the urgent need to better define the possible toxicological effects of ENMs. In this context, we present a new high‐throughput screening (HTS) platform based on the cytokinesis‐block micronucleus (CBMN) assay, lab‐on‐chip cell sorting, and automated image analysis. This HTS platform has been successfully applied to the evaluation of the cytotoxic and genotoxic effects of silver nanoparticles (AgNPs) and silica nanoparticles (SiO2NPs). In particular, our results demonstrate the high cyto‐ and genotoxicity induced by AgNPs and the biocompatibility of SiO2NPs, in primary human lymphocytes. Moreover, our data reveal that the toxic effects are also dependent on size, surface coating, and surface charge. Most importantly, our HTS platform shows that AgNP‐induced genotoxicity is lymphocyte sub‐type dependent and is particularly pronounced in CD2+ and CD4+ cells.  相似文献   

17.
The rapid development of integrated electronics and the boom in miniaturized and portable devices have increased the demand for miniaturized and on‐chip energy storage units. Currently thin‐film batteries or microsized batteries are commercially available for miniaturized devices. However, they still suffer from several limitations, such as short lifetime, low power density, and complex architecture, which limit their integration. Supercapacitors can surmount all these limitations. Particularly for micro‐supercapacitors with planar architectures, due to their unique design of the in‐plane electrode finger arrays, they possess the merits of easy fabrication and integration into on‐chip miniaturized electronics. Here, the focus is on the different strategies to design electrode finger arrays and the material engineering of in‐plane micro‐supercapacitors. It is expected that the advances in micro‐supercapacitors with in‐plane architectures will offer new opportunities for the miniaturization and integration of energy‐storage units for portable devices and on‐chip electronics.  相似文献   

18.
For the first time DNA coils formed by rolling circle amplification are quantified on‐chip by Brownian relaxation measurements on magnetic nanobeads using a magnetoresistive sensor. No external magnetic fields are required besides the magnetic field arising from the current through the sensor, which makes the setup very compact. Limits of detection down to 500 Bacillus globigii spores and 2 pM of Vibrio cholerae are demonstrated, which are on the same order of magnitude or lower than those achieved previously using a commercial macro‐scale AC susceptometer. The chip‐based readout is an important step towards the realization of field tests based on rolling circle amplification molecular analyses.  相似文献   

19.
Cell separation is a key step in many biomedical research areas including biotechnology, cancer research, regenerative medicine, and drug discovery. While conventional cell sorting approaches have led to high‐efficiency sorting by exploiting the cell's specific properties, microfluidics has shown great promise in cell separation by exploiting different physical principles and using different properties of the cells. In particular, label‐free cell separation techniques are highly recommended to minimize cell damage and avoid costly and labor‐intensive steps of labeling molecular signatures of cells. In general, microfluidic‐based cell sorting approaches can separate cells using “intrinsic” (e.g., fluid dynamic forces) versus “extrinsic” external forces (e.g., magnetic, electric field, etc.) and by using different properties of cells including size, density, deformability, shape, as well as electrical, magnetic, and compressibility/acoustic properties to select target cells from a heterogeneous cell population. In this work, principles and applications of the most commonly used label‐free microfluidic‐based cell separation methods are described. In particular, applications of microfluidic methods for the separation of circulating tumor cells, blood cells, immune cells, stem cells, and other biological cells are summarized. Computational approaches complementing such microfluidic methods are also explained. Finally, challenges and perspectives to further develop microfluidic‐based cell separation methods are discussed.  相似文献   

20.
Human hematopoietic niches are complex specialized microenvironments that maintain and regulate hematopoietic stem and progenitor cells (HSPC). Thus far, most of the studies performed investigating alterations of HSPC‐niche dynamic interactions are conducted in animal models. Herein, organ microengineering with microfluidics is combined to develop a human bone marrow (BM)‐on‐a‐chip with an integrated recirculating perfusion system that consolidates a variety of important parameters such as 3D architecture, cell–cell/cell–matrix interactions, and circulation, allowing a better mimicry of in vivo conditions. The complex BM environment is deconvoluted to 4 major distinct, but integrated, tissue‐engineered 3D niche constructs housed within a single, closed, recirculating microfluidic device system, and equipped with cell tracking technology. It is shown that this technology successfully enables the identification and quantification of preferential interactions—homing and retention—of circulating normal and malignant HSPC with distinct niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号