首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rational design of nanostructures and efficient catalyst functionalization methods are critical to the realization of highly sensitive gas sensors. In order to solve these issues, two types of strategies are reported, i.e., (i) synthesis of peapod‐like hollow SnO2 nanostructures (hollow 0D‐1D SnO2) by using fluid dynamics of liquid Sn metal and (ii) metal–protein chelate driven uniform catalyst functionalization. The hollow 0D‐1D SnO2 nanostructures have advantages in enhanced gas accessibility and higher surface areas. In addition to structural benefits, protein encapsulated catalytic nanoparticles result in the uniform catalyst functionalization on both hollow SnO2 spheres and SnO2 nanotubes due to their dynamic migration properties. The migration of catalysts with liquid Sn metal is induced by selective location of catalysts around Sn. On the basis of these structural and uniform functionalization of catalyst benefits, biomarker chemical sensors are developed, which deliver highly selective detection capability toward acetone and toluene, respectively. Pt or Pd loaded multidimensional SnO2 nanostructures exhibit outstanding acetone (R air/R gas = 93.55 @ 350 °C, 5 ppm) and toluene (R air/R gas = 9.25 @ 350 °C, 5 ppm) sensing properties, respectively. These results demonstrate that unique nanostructuring and novel catalyst loading method enable sensors to selectively detect biomarkers for exhaled breath sensors.  相似文献   

2.
A Zr‐based metal–organic framework (MOF) catalyst, Pt/Au@Pd@UIO‐66, is assembled, where UIO‐66 is Zr6O4(OH)4(BDC)6 (BDC = 1,4‐benzenedicarboxylate). The gold nanoparticles (NPs) act as the core for the epitaxial growth of Pd shells, and the core–shell monodispersed nanosphere Au@Pd is encapsulated into UIO‐66 to control its morphology and impart nanoparticle functionality. The microporous nature of UIO‐66 assists the adsorption of Pt NPs, which in turn enhances the interaction between NPs and UIO‐66, favoring the formation of isolated and well‐dispersed Pt NP active sites. This MOF exhibits high catalytic activity and CO product selectivity for the reverse‐water–gas‐shift reaction in a fixed‐bed flow reactor.  相似文献   

3.
Controllable and efficient synthesis of noble metal/transition‐metal oxide (TMO) composites with tailored nanostructures and precise components is essential for their application. Herein, a general mercaptosilane‐assisted one‐pot coassembly approach is developed to synthesize ordered mesoporous TMOs with agglomerated‐free noble metal nanoparticles, including Au/WO3, Au/TiO2, Au/NbOx, and Pt/WO3. 3‐mercaptopropyl trimethoxysilane is applied as a bridge agent to cohydrolyze with metal oxide precursors by alkoxysilane moieties and interact with the noble metal source (e.g., HAuCl4 and H2PtCl4) by mercapto (? SH) groups, resulting in coassembly with poly(ethylene oxide)‐b‐polystyrene. The noble metal decorated TMO materials exhibit highly ordered mesoporous structure, large pore size (≈14–20 nm), high specific surface area (61–138 m2 g?1), and highly dispersed noble metal (e.g., Au and Pt) nanoparticles. In the system of Au/WO3, in situ generated SiO2 incorporation not only enhances their thermal stability but also induces the formation of ε‐phase WO3 promoting gas sensing performance. Owning to its specific compositions and structure, the gas sensor based on Au/WO3 materials possess enhanced ethanol sensing performance with a good response (Rair/Rgas = 36–50 ppm of ethanol), high selectivity, and excellent low‐concentration detection capability (down to 50 ppb) at low working temperature (200 °C).  相似文献   

4.
Achieving an improved understanding of catalyst properties, with ability to predict new catalytic materials, is key to overcoming the inherent limitations of metal oxide based gas sensors associated with rather low sensitivity and selectivity, particularly under highly humid conditions. This study introduces newly designed bimetallic nanoparticles (NPs) employing bimetallic Pt‐based NPs (PtM, where M = Pd, Rh, and Ni) via a protein encapsulating route supported on mesoporous WO3 nanofibers. These structures demonstrate unprecedented sensing performance for detecting target biomarkers (even at p.p.b. levels) in highly humid exhaled breath. Sensor arrays are further employed to enable pattern recognition capable of discriminating between simulated biomarkers and controlled breath. The results provide a new class of multicomponent catalytic materials, demonstrating potential for achieving reliable breath analysis sensing.  相似文献   

5.
A novel polymer encapsulation strategy to synthesize metal isolated‐single‐atomic‐site (ISAS) catalysts supported by porous nitrogen‐doped carbon nanospheres is reported. First, metal precursors are encapsulated in situ by polymers through polymerization; then, metal ISASs are created within the polymer‐derived p‐CN nanospheres by controlled pyrolysis at high temperature (200–900 °C). Transmission electron microscopy and N2 sorption results reveal this material to exhibit a nanospheric morphology, a high surface area (≈380 m2 g?1), and a porous structure (with micropores and mesopores). Characterization by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure confirms the metal to be present as metal ISASs. This methodology is applicable to both noble and nonprecious metals (M‐ISAS/p‐CN, M = Co, Ni, Cu, Mn, Pd, etc.). In particular, the Co‐ISAS/p‐CN nanospheres obtained using this method show comparable (E1/2 = 0.838 V) electrochemical oxygen reduction activity to commercial Pt/C with 20 wt% Pt loading (E1/2 = 0.834 V) in alkaline media, superior methanol tolerance, and outstanding stability, even after 5000 cycles.  相似文献   

6.
Developing non‐noble metal catalysts as Pt substitutes, with good activity and stability, remains a great challenge for cost‐effective electrochemical evolution of hydrogen. Herein, carbon‐encapsulated WOx anchored on a carbon support (WOx@C/C) that has remarkable Pt‐like catalytic behavior for the hydrogen evolution reaction (HER) is reported. Theoretical calculations reveal that carbon encapsulation improves the conductivity, acting as an electron acceptor/donor, and also modifies the Gibbs free energy of H* values for different adsorption sites (carbon atoms over the W atom, O atom, W? O bond, and hollow sites). Experimental results confirm that WOx@C/C obtained at 900 °C with 40 wt% metal loading has excellent HER activity regarding its Tafel slope and overpotential at 10 and 60 mA cm?2, and also has outstanding stability at ?50 mV for 18 h. Overall, the results and facile synthesis method offer an exciting avenue for the design of cost‐effective catalysts for scalable hydrogen generation.  相似文献   

7.
Porous polymers with well‐orchestrated nanomorphologies are useful in many fields, but high surface area, hierarchical structure, and ordered pores are difficult to be satisfied in one polymer simultaneously. Herein, a solvent‐induced self‐assembly strategy to synthesize hierarchical porous polymers with tunable morphology, mesoporous structure, and microporous pore wall is reported. The poly(ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) diblock copolymer micelles are cross‐linked via Friedel–Crafts reaction, which is a new way to anchor micelles into porous polymers with well‐defined structure. Varying the polarity of the solvent has a dramatic effect upon the oleophobic/oleophylic interaction, and the self‐assembly structure of PEO‐b‐PS can be tailored from aggregated nanoparticles to hollow spheres even mesoporous bulk. A morphological phase diagram is accomplished to systematically evaluate the influence of the composition of PEO‐b‐PS and the mixed solvent component on the pore structure and morphology of products. The hypercrosslinked hollow polymer spheres provide a confined microenvironment for the in situ reduction of K2PdCl4 to ultrasmall Pd nanoparticles, which exhibit excellent catalytic performance in solvent‐free catalytic oxidation of hydrocarbons and alcohols.  相似文献   

8.
Tungsten oxide (WO3?x ), a new alternative to conventional semiconductor material, has attracted numerous attentions owning to its widespread potential applications. Various methods have been reported for the synthesis of WO3?x nanostructures such as nanowires or nanodots. However, templates or surfactants are often required for the synthesis, which significantly complicate the process and hinder the broad applications. Herein, one‐pot template/surfactant‐free solvothermal method is proposed to synthesize the WO3?x nanostructures including fluorescent quantum dots (QDs) and bundle‐like nanowires simultaneously. The as‐prepared WO3?x QDs can be well dispersed in aqueous medium, exhibit excellent photoluminescent properties, and show an average size of 3.25 ± 0.25 nm as evidenced by transmission electron microscopy. Meanwhile, the diameter of the WO3?x nanowires is found to be about 27.5 nm as manifested by the scanning electron microscope images. The generation mechanism for these two WO3?x nanostructures are systematically studied and proposed. The WO3?x QDs have been successfully applied in efficient fluorescent staining and specific ferric ion detection. Moreover, the WO3?x nanowires can be utilized as effective dielectric materials for electromagnetic wave absorption.  相似文献   

9.
Longer carrier diffusion length and improved power conversion efficiency have been reported for thin‐film solar cell of organolead mixed‐halide perovskite MAPbI3– x Cl x in comparison with MAPbI3. Instead of substituting I in the MAPbI3 lattice, Cl‐incorporation has been shown to mainly improve the film morphology of perovskite absorber. Well‐defined crystal structure, adjustable composition (x), and regular morphology, remains a formidable task. Herein, a facile solution‐assembly method is reported for synthesizing single‐crystalline nanofibers (NFs) of tetragonal‐lattice MAPbI3– x Cl x with the Cl‐content adjustable between 0 ≤ x ≤ 0.75, leading to a gradual blueshift of the absorption and photoluminescence maxima from x = 0 to 0.75. The photoresponsivity (R) of MAPbI3 NFs keeps almost unchanging at a value independent of the white‐light illumination intensity (P). In contrast, R of MAPbI3– x Cl x NFs decreases rapidly with increasing both the x and P values, indicating Cl‐substitution increases the recombination traps of photogenerated free electrons and holes. This study provides a model system to examine the role of extrinsic Cl ions in both perovskite crystallography and optoelectronic properties.  相似文献   

10.
This study presents a novel metal‐organic‐framework‐engaged synthesis route based on porous tellurium nanotubes as a sacrificial template for hierarchically porous 1D carbon nanotubes. Furthermore, an ultrathin Fe‐ion‐containing polydopamine layer has been introduced to generate highly effective FeNxC active sites into the carbon framework and to induce a high degree of graphitization. The synergistic effects between the hierarchically porous 1D carbon structure and the embedded FeNxC active sites in the carbon framework manifest in superior catalytic activity toward oxygen reduction reaction (ORR) compared to Pt/C catalyst in both alkaline and acidic media. A rechargeable zinc‐air battery assembled in a decoupled configuration with the nonprecious pCNT@Fe@GL/CNF ORR electrode and Ni‐Fe LDH/NiF oxygen evolution reaction (OER) electrode exhibits charge–discharge overpotentials similar to the counterparts of Pt/C ORR electrode and IrO2 OER electrode.  相似文献   

11.
Site-selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx) can remarkably improve its catalytic performance and maintain the functions of the carrier. However, it is challenging to selectively deposit transition metal oxides on the metal NPs embedded in the mesopores of supporting matrix through conventional deposition method. Herein, a restricted in situ site-selective modification strategy utilizing poly(ethylene oxide)-block-polystyrene (PEO-b-PS) micellar nanoreactors is proposed to overcome such an obstacle. The PEO shell of PEO-b-PS micelles interacts with the hydrolyzed tungsten salts and silica precursors, while the hydrophobic organoplatinum complex and ferrocene are confined in the hydrophobic PS core. The thermal treatment leads to mesoporous SiO2/WO3-x framework, and meanwhile FeOx nanolayers are in situ partially deposited on the supported Pt NPs due to the strong metal-support interaction between FeOx and Pt. The selective modification of Pt NPs with FeOx makes the Pt NPs present an electron-deficient state, which promotes the mobility of CO and activates the oxidation of CO. Therefore, mesoporous SiO2/WO3-x-FeOx/Pt based gas sensors show a high sensitivity (31 ± 2 in 50 ppm of CO), excellent selectivity, and fast response time (3.6 s to 25 ppm) to CO gas at low operating temperature (66 °C, 74% relative humidity).  相似文献   

12.
A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber‐supported supra‐high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of 1D hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra‐high density small “bare” Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber‐supported supra‐high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.  相似文献   

13.
Mesoporous nanofibers (NFs) with a high surface area of 112 m2/g have been prepared by electrospinning technique. The structures of mesoporous NFs and regular NFs are characterized and compared through scanning electron microscope (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and selected area electron diffraction (SAED) studies. Using mesoporous TiO2 NFs as the photoelectrode, solid‐state dye‐sensitized solar cells (SDSCs) have been fabricated employing D131 as the sensitizer and P3HT as the hole transporting material to yield an energy conversion efficiency (η) of 1.82%. A Jsc of 3.979 mA cm?2 is obtained for mesoporous NF‐based devices, which is 3‐fold higher than that (0.973 mA cm?2) for regular NF‐based devices fabricated under the same condition (η = 0.42%). Incident photon‐to‐current conversion efficiency (IPCE) and dye‐desorption test demonstrate that the increase in Jsc is mainly due to greatly improved dye adsorption for mesoporous NFs as compared to that for regular NFs. In addition, intensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS) measurements indicate that the mesopores on NF surface have very minor effects on charge transport and collection. Initial aging test proves good stability of the fabricated devices, which indicates the promise of mesoporous NFs as photoelectrode for low‐cost SDSCs.  相似文献   

14.
Assembling nanoparticles (NPs) into ordered architectures remains a challenge in the field of nanotechnology. Templated strategies have been widely utilized for NP assembly. As typical biological nanostructures, virus‐based NPs (VNPs) have shown great promise in templating NP assembly. Here it is illustrated that the VNP of simian virus 40 (SV40) is a powerful scaffold in directing the assembly of 3D hybrid nanoarchitectures with one NP encapsulated inside as a core and a cluster of gold NPs (AuNPs) on the outer surface of the SV40 VNP as a shell, in which the core NPs can be CdSe/ZnS quantum dots (QDs), Ag2S QDs, or AuNPs. The assembling of AuNPs onto the SV40 VNP surface is determined by the interactions between the AuNPs and the amine groups on the outer surface of SV40 VNPs. It is expected that the VNP guided 3D hybrid nanoarchitectures provide ideal models for NP interaction studies and open new opportunities for integrating various functionalities in NP assemblies.  相似文献   

15.
Durable electrocatalysts with high catalytic activity toward oxygen reduction reaction (ORR) are crucial to high‐performance primary zinc‐air batteries (ZnABs) and direct methanol fuel cells (DMFCs). An efficient composite electrocatalyst, Co@Co3O4 core@shell nanoparticles (NPs) embedded in pyrolyzed polydopamine (PPD) is reported, i.e., in Co@Co3O4@PPD core@bishell structure, obtained via a three‐step sequential process involving hydrothermal synthesis, high temperature calcination under nitrogen atmosphere, and gentle heating in air. With Co@Co3O4 NPs encapsulated by ultrathin highly graphitized N‐doped carbon, the catalyst exhibits excellent stability in aqueous alkaline solution over extended period and good tolerance to methanol crossover effect. The integration of N‐doped graphitic carbon outer shell and ultrathin nanocrystalline Co3O4 inner shell enable high ORR activity of the core@bishell NPs, as evidenced by ZnABs using catalyst of Co@Co3O4@PPD in air‐cathode which delivers a stable voltage profile over 40 h at a discharge current density of as high as 20 mA cm?2.  相似文献   

16.
A unique nanorod‐structured tungsten carbide material with high specific surface area of 198 m2 g?1 is successfully synthesized for the first time by pseudomorphic transformation of chemically synthesized WO3 nanorods through a high‐temperature method. An electrocatalyst composed of Pt nanoparticles supported on WC nanorods demonstrates higher electrocatalytic activity for methanol electro‐oxidation, better tolerance to CO poisoning, and superior performance for cathodic electrocatalytic hydrogen evolution than a Pt/C catalyst. This work provides a novel method to synthesize high‐surface‐area nanorod‐structured WC materials by preparing oxide precursors with the desired external morphology, thus offering great potential for a broad range of applications of these materials in related reaction systems.  相似文献   

17.
Nitrogen (N)‐doped carbons are potential nonprecious metal catalysts to replace Pt for the oxygen reduction reaction (ORR). Pyridinic‐N‐C is believed to be the most active N group for catalyzing ORR. In this work, using zinc phthalocyanine as a precursor effectively overcomes the serious loss of pyridinic‐N, which is commonly regarded as the biggest obstacle to catalytic performance enhancement upon adopting a second pyrolysis process, for the preparation of a 3D porous N‐doped carbon framework (NDCF). The results show only ≈14% loss in pyridinic‐N proportion in the Zn‐containing sample during the second pyrolysis process. In comparison, a loss of ≈72% pyridinic‐N occurs for the non‐Zn counterpart. The high pyridinic‐N proportion, the porous carbon framework produced upon NaCl removal, and the increased mesoporous defects in the second pyrolysis process make the as‐prepared catalyst an excellent electrocatalyst for ORR, exhibiting a half‐wave potential (E1/2 = 0.88 V) up to 33 mV superior to state‐of‐the‐art Pt/C and high four‐electron selectivity (n > 3.83) in alkaline solution, which is among the best ORR activities reported for N‐doped carbon catalysts. Furthermore, only ≈18 mV degradation in E1/2 occurs after an 8000 cycles' accelerating stability test, manifesting the outstanding stability of the as‐prepared catalyst.  相似文献   

18.
Nanocasting based on porous templates is a powerful strategy in accessing materials and structures that are difficult to form by bottom‐up syntheses in a controlled fashion. A facile synthetic strategy for casting ordered, nanoporous platinum (NP‐Pt) networks with a high degree of control by using metal–organic frameworks (MOFs) as templates is reported here. The Pt precursor is first infiltrated into zirconium‐based MOFs and subsequently transformed to 3D metallic networks via a chemical reduction process. It is demonstrated that the dimensions and topologies of the cast NP‐Pt networks can be accurately controlled by using different MOFs as templates. The Brunauer–Emmett–Teller surface areas of the NP‐Pt networks are estimated to be >100 m2 g?1 and they exhibit excellent catalytic activities in the methanol electrooxidation reaction (MEOR). This new methodology presents an attractive route to prepare well‐defined nanoporous materials for diverse applications ranging from energy to sensing and biotechnology.  相似文献   

19.
Different from graphene with the highly stable sp2‐hybridized carbon atoms, which shows poor controllability for constructing strong interactions between graphene and guest metal, graphdiyne has a great potential to be engineered because its high‐reactive acetylene linkages can effectively chelate metal atoms. Herein, a hydrogen‐substituted graphdiyne (HsGDY) supported metal catalyst system through in situ growth of Cu3Pd nanoalloys on HsGDY surface is developed. Benefiting from the strong metal‐chelating ability of acetylenic linkages, Cu3Pd nanoalloys are intimately anchored on HsGDY surface that accordingly creates a strong interaction. The optimal HsGDY‐supported Cu3Pd catalyst (HsGDY/Cu3Pd‐750) exhibits outstanding electrocatalytic activity for the oxygen reduction reaction (ORR) with an admirable half‐wave potential (0.870 V), an impressive kinetic current density at 0.75 V (57.7 mA cm?2) and long‐term stability, far outperforming those of the state‐of‐the‐art Pt/C catalyst (0.859 V and 15.8 mA cm?2). This excellent performance is further highlighted by the Zn–air battery using HsGDY/Cu3Pd‐750 as cathode. Density function theory calculations show that such electrocatalytic performance is attributed to the strong interaction between Cu3Pd and C?C bonds of HsGDY, which causes the asymmetric electron distribution on two carbon atoms of C?C bond and the strong charge transfer to weaken the shoulder‐to‐shoulder π conjugation, eventually facilitating the ORR process.  相似文献   

20.
Polyanilines (pANIs), loaded with phosphotungstic acid (PTA), are pyrolyzed to get WO3 or W2N (≈6 and ≈7 nm, respectively), which is well‐dispersed on pANI‐derived porous carbons (pDCs). Depending on the pyrolysis temperature, WO3/pDC, W2N/pDC, or W2N‐W/pDCs could be obtained selectively. pANI acts as both the precursor of pDC and the nitrogen source for the nitridation of WO3 into W2N during the pyrolysis. Importantly, W2N could be obtained from the pyrolysis without ammonia feeding. The obtained W2N/pDC is applied as a heterogeneous catalyst for the oxidative desulfurization (ODS) of liquid fuel for the first time, and the results are compared with WO3/pDC and WO3/ZrO2. The W2N/pDC is very efficient in ODS with remarkable performance compared with WO3/pDC or WO3/ZrO2, which is applied as a representative ODS catalyst. For example, W2N/pDC shows around 3.4 and 2.7 times of kinetic constant and turnover frequency (based on 5 min of reaction), respectively, compared to that of WO3/ZrO2. Moreover, the catalysts could be regenerated in a facile way. Therefore, W2N/pDC could be produced facilely from pyrolysis (without ammonia feeding) of PTA/pANI, and W2N, well‐dispersed on pDC, can be suggested as a very efficient oxidation catalyst for the desulfurization of liquid fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号