首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Engineering the morphology and structure of low‐dimensional carbon nanomaterials is important to study their mechanical and electrical properties and even superconductivity. Herein, first the techniques that are used to engineer carbon nanotubes, including manipulation, morphology modification, and fabrication of complex nanostructures, are reviewed. This is followed by a summary of the methods applied to fabricate graphene nanostructures, such as heterostructures and nanoenvelopes of graphene. Lastly, an insight into the applications of low‐dimensional‐carbon‐based electronics is given, such as carbon nanotube (CNT) transistors, graphene‐based nanoenvelopes, and graphene‐contacted CNT field‐effect transistors (FETs), which are promising components in future electronics.  相似文献   

2.
Covalently functionalized, semiconducting double‐walled carbon nanotubes exhibit remarkable properties and can outperform their single‐walled carbon nanotube counterparts. In order to harness their potential for electronic applications, metallic double‐walled carbon nanotubes must be separated from the semiconductors. However, the inner wall is inaccessible to current separation techniques which rely on the surface properties. Here, the first approach to address this challenge through electrical breakdown of metallic double‐walled carbon nanotubes, both inner and outer walls, within networks of mixed electronic types is described. The intact semiconductors demonstrate a ~62% retention of the ON‐state conductance in thin film transistors in response to covalent functionalization. The selective elimination of the metallic pathways improves the ON/OFF ratio, by more than 360 times, to as high as 40 700, while simultaneously retaining high ON‐state conductance.  相似文献   

3.
4.
5.
Single‐walled carbon nanotubes are promising for many applications due to their unique mechanical, electrical and optical properties. However, their application has been hampered so far by the lack of controllability in the direct growth process, in particular the size and chirality distributions which inevitably lead to a large variability of their electronic structures. Here we demonstrate the effect of catalyst interfacial diffusion using a tri‐layered Al2O3/Fe(Mo)/Al2O3 catalyst and achieve the effective control of density, diameter, and conductivity of the as‐grown nanotube networks. This method modulates the thickness of the top Al2O3 layer which affects the diffusion of Fe atoms and subsequently the formation of catalyst nanoparticles. We show that the tri‐layered catalyst allows one to vary the density of networks from 0.18 to 35 tubes/μm2, the diameter from 1.36 to 1.72 nm, and the metallic fraction from 20% to 45%. It may thus represent a promising strategy for tailoring the properties of as‐grown carbon nanotube networks for their proposed applications.  相似文献   

6.
7.
Interactions between biological molecules are fundamental to biology. Probing the complex behaviors of biological systems at the molecular level provides new opportunities to uncover the wealth of molecular information that is usually hidden in conventional ensemble experiments and address the “unanswerable” questions in the physical, chemical and biological sciences. Nanometer‐scale materials are particularly well matched with biomolecular interactions due to their biocompatibility, size comparability, and remarkable electrical properties, thus setting the basis for biological sensing with ultrahigh sensitivity. This brief review aims to highlight the recent progress of the burgeoning field of single‐molecule electrical biosensors based on nanomaterials, with a particular focus on single‐walled carbon nanotubes (SWNTs), for better understanding of the molecular structure, interacting dynamics, and molecular functions. The perspectives and key issues that will be critical to the success of next‐generation single‐molecule biosensors toward practical applications are also discussed, such as the device reproducibility, system integration, and theoretical simulation.  相似文献   

8.
Single‐walled carbon nanotubes (SWNTs) are widely thought to be a strong contender for next‐generation printed electronic transistor materials. However, large‐scale solution‐based parallel assembly of SWNTs to obtain high‐performance transistor devices is challenging. SWNTs have anisotropic properties and, although partial alignment of the nanotubes has been theoretically predicted to achieve optimum transistor device performance, thus far no parallel solution‐based technique can achieve this. Herein a novel solution‐based technique, the immersion‐cum‐shake method, is reported to achieve partially aligned SWNT networks using semiconductive (99% enriched) SWNTs (s‐SWNTs). By immersing an aminosilane‐treated wafer into a solution of nanotubes placed on a rotary shaker, the repetitive flow of the nanotube solution over the wafer surface during the deposition process orients the nanotubes toward the fluid flow direction. By adjusting the nanotube concentration in the solution, the nanotube density of the partially aligned network can be controlled; linear densities ranging from 5 to 45 SWNTs/μm are observed. Through control of the linear SWNT density and channel length, the optimum SWNT‐based field‐effect transistor devices achieve outstanding performance metrics (with an on/off ratio of ~3.2 × 104 and mobility 46.5 cm2/Vs). Atomic force microscopy shows that the partial alignment is uniform over an area of 20 × 20 mm2 and confirms that the orientation of the nanotubes is mostly along the fluid flow direction, with a narrow orientation scatter characterized by a full width at half maximum (FWHM) of <15° for all but the densest film, which is 35°. This parallel process is large‐scale applicable and exploits the anisotropic properties of the SWNTs, presenting a viable path forward for industrial adoption of SWNTs in printed, flexible, and large‐area electronics.  相似文献   

9.
Single‐walled carbon nanotubes (SWCNTs) have been the focus of intense research, and the body of literature continues to grow exponentially, despite more than two decades having passed since the first reports. As well as extensive studies of the fundamental properties, this has seen SWCNTs used in a plethora of applications as far ranging as microelectronics, energy storage, solar cells, and sensors, to cancer treatment, drug delivery, and neuronal interfaces. On the other hand, the properties and applications of double‐walled carbon nanotubes (DWCNTs) have remained relatively under‐explored. This is despite DWCNTs not only sharing many of the same unique characteristics of their single‐walled counterparts, but also possessing an additional suite of potentially advantageous properties arising due to the presence of the second wall and the often complex inter‐wall interactions that arise. For example, it is envisaged that the outer wall can be selectively functionalized whilst still leaving the inner wall in its pristine state and available for signal transduction. A similar situation arises in DWCNT field effect transistors (FETs), where the outer wall can provide a convenient degree of chemical shielding of the inner wall from the external environment, allowing the excellent transconductance properties of the pristine nanotubes to be more fully exploited. Additionally, DWCNTs should also offer unique opportunities to further the fundamental understanding of the inter‐wall interactions within and between carbon nanotubes. However, the realization of these goals has so far been limited by the same challenge experienced by the SWCNT field until recent years, namely, the inherent heterogeneity of raw, as‐produced DWCNT material. As such, there is now an emerging field of research regarding DWCNT processing that focuses on the preparation of material of defined length, diameter and electronic type, and which is rapidly building upon the experience gained by the broader SWCNT community. This review describes the background of the field, summarizing some relevant theory and the available synthesis and purification routes; then provides a thorough synopsis of the current state‐of‐the‐art in DWCNT sorting methodologies, outlines contemporary challenges in the field, and discusses the outlook for various potential applications of the resulting material.  相似文献   

10.
11.
Improving volumetric energy density is one of the major challenges in nanostructured carbon electrodes for electrochemical energy storage device applications. Herein, a simple hydrothermal oxidation process of single‐walled carbon nanotube (SWNT) networks in dilute nitric acid is reported, enabling simultaneous physical densification and chemical functionalization of the as‐assembled randomly‐packed SWNT films. After the hydrothermal oxidation process, the density of the SWNT films increases from 0.63 to 1.02 g cm?3 and a considerable amount of redox‐active oxygen functional groups are introduced on the surface of the SWNTs. The functionalized SWNT films are used as positive electrodes against Li metal negative electrodes for potential Li‐ion capacitors or Li‐ion battery applications. The functionalized SWNT electrodes deliver high volumetric as well as gravimetric capacities, 154 Ah L?1 and 152 mAh g?1, respectively, owing to the surface redox reactions between the introduced oxygen functional groups and Li ions. In addition, these electrodes exhibit a remarkable rate‐capability by retaining its high capacity of 94 Ah L?1 (92 mAh g?1) at a high discharge rate of 10 A g?1. These results demonstrate the simple hydrothermal oxidation process as an attractive strategy for improving the volumetric performance of nanostructured carbon electrodes.  相似文献   

12.
13.
14.
Designing ultrasensitive detectors often requires complex architectures, high‐voltage operations, and sophisticated low‐noise measurements. In this work, it is shown that simple low‐bias two‐terminal DC‐conductance values of graphene and single‐walled carbon nanotubes are extremely sensitive to ionized gas molecules. Incident ions form an electrode‐free, dielectric‐ or electrolyte‐free, bias‐free vapor‐phase top‐gate that can efficiently modulate carrier densities up to ≈0.6 × 1013 cm?2. Surprisingly, the resulting current changes are several orders of magnitude larger than that expected from conventional electrostatic gating, suggesting the possible role of a current‐gain inducing mechanism similar to those seen in photodetectors. These miniature detectors demonstrate charge–current amplification factor values exceeding 108 A C?1 in vacuum with undiminished responses in open air, and clearly distinguish between positive and negative ions sources. At extremely low rates of ion incidence, detector currents show stepwise changes with time, and calculations suggest that these stepwise changes can result from arrival of individual ions. These sensitive ion detectors are used to demonstrate a proof‐of‐concept low‐cost, amplifier‐free, light‐emitting‐diode‐based low‐power ion‐indicator.  相似文献   

15.
16.
17.
18.
19.
Fluorescent nanomaterials are expected to revolutionize medical diagnostic, imaging, and therapeutic tools due to their superior optical and structural properties. Their inefficient water solubility, cell permeability, biodistribution, and high toxicity, however, limit the full potential of their application. To overcome these obstacles, a water‐soluble, fluorescent, cytocompatible polymer—single‐walled carbon nanotube (SWNT) complex is introduced for bioimaging applications. The supramolecular complex consists of an alkylated polymer conjugated with neutral hydroxylated or charged sulfated dendronized perylene bisimides (PBIs) and SWNTs as a general immobilization platform. The polymer backbone solubilizes the SWNTs, decorates them with fluorescent PBIs, and strongly improves their cytocompatibility by wrapping around the SWNT scaffold. In photophysical measurements and biological in vitro studies, sulfated complexes exhibit superior optical properties, cellular uptake, and intracellular staining over their hydroxylated analogs. A toxicity assay confirms the highly improved cytocompatibility of the polymer‐wrapped SWNTs toward surfactant‐solubilized SWNTs. In microscopy studies the complexes allow for the direct imaging of the SWNTs' cellular uptake via the PBI and SWNT emission using the 1st and 2nd optical window for bioimaging. These findings render the polymer‐SWNT complexes with nanometer size, dual fluorescence, multiple charges, and high cytocompatibility as valuable systems for a broad range of fluorescence bioimaging studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号