首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scanning electrochemical microscopy (SECM) has been employed in the feedback mode to assess the electrochemical behavior of two-dimensional networks of single-walled carbon nanotubes (SWNTs). It is shown that, even though the network comprises both metallic and semiconducting SWNTs, at high density (well above the percolation threshold for metallic SWNTs) and with approximately millimolar concentrations of redox species the network behaves as a thin metallic film, irrespective of the formal potential of the redox couple. This result is particularly striking since the fractional surface coverage of SWNTs is only approximately 1% and SECM delivers high mass transport rates to the network. Finite element simulations demonstrate that under these conditions diffusional overlap between neighboring SWNTs is significant so that planar diffusion prevails in the gap between the SECM tip and the underlying SWNT substrate. The SECM feedback response diminishes at higher concentrations of the redox species. However, wet gate measurements show that at the solution potentials of interest the conductivity is sufficiently high that lateral conductivity is not expected to be limiting. This suggests that reaction kinetics may be a limiting factor, especially since the low surface coverage of the SWNT network results in large fluxes to the SWNTs, which are characterized by a low density of electronic states. For electroanalytical purposes, significantly, two-dimensional SWNT networks can be considered as metallic films for typical millimolar concentrations employed in amperometry and voltammetry. Moreover, SWNT networks can be inexpensively and easily formed over large scales, opening up the possibility of further electroanalytical applications.  相似文献   

2.
Carbon nanotubes have a variety of remarkable electronic and mechanical properties that, in principle, lend them to promising optoelectronic applications. However, the field has been plagued by heterogeneity in the distributions of synthesized tubes and uncontrolled bundling, both of which have prevented nanotubes from reaching their full potential. Here, a variety of recently demonstrated solution‐processing avenues is presented, which may combat these challenges through manipulation of nanoscale structures. Recent advances in polymer‐wrapping of single‐walled carbon nanotubes (SWNTs) are shown, along with how the resulting nanostructures can selectively disperse tubes while also exploiting the favorable properties of the polymer, such as light‐harvesting ability. New methods to controllably form nanoengineered SWNT networks with controlled nanotube placement are discussed. These nanoengineered networks decrease bundling, lower the percolation threshold, and enable a strong enhancement in charge conductivity compared to random networks, making them potentially attractive for optoelectronic applications. Finally, SWNT applications, to date, in organic and perovskite photovoltaics are reviewed, and insights as to how the aforementioned recent advancements can lead to improved device performance provided.  相似文献   

3.
Direct growth of chirality‐controlled single‐walled carbon nanotubes (SWNTs) with metal catalyst free strategy, like cloning or epitaxial growth, has suffered from the low efficiency. The underlying problem is the activation of seed edge. Here an unexpectedly efficient microwave‐assisted pathway to regenerate SWNTs from carbon fragments on SiO2/Si substrate is demonstrated via Raman spectroscopy and atomic force microscope (AFM) characterization. In this attempt, microwave irradiation provides fast heating to remove polar groups bonded to carbon nanotubes and reduce the spontaneous closure of tubes’ open ends. The survived SWNT and carbon fragments connected to it after plasma treatment are simply microwaved and then they serve as the template for regeneration. Scanning electron microscope and AFM characterizations indicate that the efficiency of the regeneration can reach 100%. And the regenerated SWNT has been proved without any change in chirality compared to the original SWNT. Electrical measurements on regenerated carbon nanotube films indicate 1 and 2 times increase in on/off ratio and on‐state current respectively than original carbon nanotube films obtained from solution‐phase separation, confirming the improvement of SWNT's quality. The microwave‐assisted regeneration is found to be highly effective and would be applied to improve the cloning efficiency of carbon nanotubes potentially.  相似文献   

4.
Single‐walled carbon nanotubes (SWNTs) are widely thought to be a strong contender for next‐generation printed electronic transistor materials. However, large‐scale solution‐based parallel assembly of SWNTs to obtain high‐performance transistor devices is challenging. SWNTs have anisotropic properties and, although partial alignment of the nanotubes has been theoretically predicted to achieve optimum transistor device performance, thus far no parallel solution‐based technique can achieve this. Herein a novel solution‐based technique, the immersion‐cum‐shake method, is reported to achieve partially aligned SWNT networks using semiconductive (99% enriched) SWNTs (s‐SWNTs). By immersing an aminosilane‐treated wafer into a solution of nanotubes placed on a rotary shaker, the repetitive flow of the nanotube solution over the wafer surface during the deposition process orients the nanotubes toward the fluid flow direction. By adjusting the nanotube concentration in the solution, the nanotube density of the partially aligned network can be controlled; linear densities ranging from 5 to 45 SWNTs/μm are observed. Through control of the linear SWNT density and channel length, the optimum SWNT‐based field‐effect transistor devices achieve outstanding performance metrics (with an on/off ratio of ~3.2 × 104 and mobility 46.5 cm2/Vs). Atomic force microscopy shows that the partial alignment is uniform over an area of 20 × 20 mm2 and confirms that the orientation of the nanotubes is mostly along the fluid flow direction, with a narrow orientation scatter characterized by a full width at half maximum (FWHM) of <15° for all but the densest film, which is 35°. This parallel process is large‐scale applicable and exploits the anisotropic properties of the SWNTs, presenting a viable path forward for industrial adoption of SWNTs in printed, flexible, and large‐area electronics.  相似文献   

5.
We demonstrate the reproducible fabrication of single-walled carbon nanotube (SWNT) networks, via catalyzed chemical vapor deposition (cCVD). Fe nanoparticles are employed as the catalyst, with methane as the carbon-containing gas. cCVD growth under these conditions results in the formation of multiply interconnected, random, two-dimensional networks of SWNTs. Investigation of the effect of parameters such as methane flow rate and temperature on the growth process enables control over the density of the network, which controls the network conductivity. Low-density networks demonstrate p-type semiconductor behavior, whilst high-density networks exhibit semimetallic behavior. In both cases conductance is demonstrated over macroscopic length scales, up to millimeters, much longer than the individual SWNTs, despite the surface coverage being <1 %. The networks can be defined in regions of a surface by photolithography before or after growth. Controlled growth of SWNT networks thus enables the application of SWNTs as macroscale conductors with controllable, predictable, and reproducible characteristics.  相似文献   

6.
Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si‐based solar cells. Flexible hybrid single‐walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room‐temperature processes for the fabrication of solar‐cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light‐trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generate and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high‐performance ultrathin hybrid SWNT/Si solar cells.  相似文献   

7.
A study based on two-dimensional percolation theory yielding quantitative parameters for optimum connectivity of transparent single-wall carbon nanotube (SWNT) thin films is reported. Optimum SWNT concentration in the filtrated solution was found to be 0.1 mg/L with a volume of 30 mL. Such parameters lead to SWNT fractions in the films of approximately Phi = 1.8 x 10(-3), much below the metallic percolation threshold, which is found to be approximately PhiC = 5.5 x 10(-3). Therefore, the performance of transparent carbon nanotube thin-film transistors is limited by the metallic SWNTs, even below their percolation threshold. We show how this effect is related to hopping or tunneling between neighboring metallic tubes.  相似文献   

8.
In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self‐assembly of semiconducting single walled carbon nanotubes (s‐SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s‐SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self‐assembly of the selected s‐SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s‐SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s‐SWNT purity. Field‐effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self‐assembly of the SWNTs/thiolated‐polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm2 V?1 s?1), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents.  相似文献   

9.
Macroscopic networks of highly aligned SWNTs have been fabricated at room temperature by laminar flow deposition from aqueous suspensions. This deposition method allows the growth of a macroscopic two dimensional SWNT network through successive deposition cycles. AFM image analysis showed that each deposition cycle puts down a reproducible density of SWNTs, with the final density being directly proportional to the number of deposition cycles for a given solution. The macroscopic electronic behavior of these networks was characterized by DC conductance measurements taken after each deposition cycle. This showed that these networks could be described by two dimensional percolation models throughout the growth process.  相似文献   

10.
Ultramicroelectrodes (UMEs) fabricated from networks of chemical vapor deposited single-walled carbon nanotubes (SWNTs) on insulating silicon oxide surfaces are shown to offer superior qualities over solid UMEs of the same size and dimensions. Disk shaped UMEs, comprising two-dimensional "metallic" networks of SWNTs, have been fabricated lithographically, with a surface coverage of <1% of the underlying insulating surface. The electrodes are long lasting and give highly reproducible responses (either for repeat runs with the same electrode or when comparing several electrodes with the same size). For redox concentrations 相似文献   

11.
Kim Y  Lee S  Choi HH  Noh JS  Lee W 《Nanotechnology》2010,21(49):495501
Single-walled carbon nanotube (SWNT) networks were used to detect hazardous dimethyl-methyl-phosphonate (DMMP) gas in real time, employing two different metals as electrodes. Random networks of SWNTs were simply obtained by drop-casting a SWNT-containing solution onto a surface-oxidized Si substrate. Although the electrical responses to DMMP at room temperature were reversible for both metals, the Pd-contacting SWNT network sensors exhibited a higher response and a shorter response time than those of the Au-contacting SWNT network sensors at the same DMMP concentration, due to the stronger interactions between the SWNTs and Pd surface atoms. In Pd-contacting SWNT network sensors, the response increased linearly with increasing DMMP concentration and reproducible response curves were obtained for DMMP levels as low as 1 ppm. These results indicate that SWNT networks in contact with Pd electrodes can function as good DMMP sensors at room temperature with scalable and fast response and excellent recovery.  相似文献   

12.
Suspended single‐walled carbon nanotubes (SWNTs) have advantages in mechanical resonators and highly sensitive sensors. Large‐scale fabrication of suspended SWNTs array devices and uniformity among SWNTs devices remain a great challenge. This study demonstrates an effective, fast, and wafer‐scale technique to fabricate suspended SWNT arrays, which is based on a dynamic motion of silver liquid to suspend and align the SWNTs between the prefabricated palladium electrodes in high temperature annealing treatment. Suspended, strained, and aligned SWNTs are synthesized on a 2 × 2 cm2 substrate with an average density of 10 tubes per micrometer. Under the optimal conditions, almost all SWNTs become suspended. A promising formation model of suspended SWNTs is established. The Kelvin four‐terminal resistance measurement shows that these SWNT array devices have extreme low contact resistance. Meanwhile, the suspended SWNT array field effect transistors are fabricated by selective etching of metallic SWNTs using electrical breakdown. This method of large‐scale fabrication of suspended architectures pushes the study of nanoscale materials into a new stage related to the electrical physics and industrial applications.  相似文献   

13.
Highly uniform and large‐area single‐walled carbon‐nanotube (SWNT) networks are realized by the dip‐coating method, which is based on fundamental fluid‐dynamic phenomena such as capillary condensation and surface tension. The changes in the polarity and hydration properties of the substrate affect the morphology of the SWNT networks and result in nonlinear growth of the networks in the repetitive dip‐coating process. The density and the thickness of the SWNT networks are controlled by processing variables including number of dip coatings, concentration of SWNT colloidal solution, and withdrawal velocity. The networks have uniform sheet resistances and high optical transmittance in the visible wavelength range.  相似文献   

14.
We report on electrical Raman measurements in transparent and conducting single-wall carbon nanotube (SWNT) thin films. Application of external voltage results in downshifts of the D and G modes and in reduction of their intensity. The intensities of the radial breathing modes increase with external electric field related to the application of the external voltage in metallic SWNTs, while decreasing in semiconducting SWNTs. A model explaining the phenomenon in terms of both direct and indirect (Joule heating) effects of the field is proposed. Our work rules out the elimination of large amounts of metallic SWNTs in thin film transistors using high field pulses. Our results support the existence of Kohn anomalies in the Raman-active optical branches of metallic graphitic materials.  相似文献   

15.
We present a fabrication technique for discrete, released carbon-nanotube-based nanomechanical force sensors. The fabrication technique uses prepatterned coordinate markers to align the device design to predeposited single-walled carbon nanotubes (SWNTs): Atomic force microscope (AFM) images are recorded to determine spatial orientation and location of each discrete nanotube to be integrated in a nanoscaled force sensor. Electron beam lithography is subsequently used to pattern the metallic electrodes for the nanoscale structures. Diluted hydrofluoric acid etching followed by critical point drying completes the nanosized device fabrication. We use discrete, highly purified, and chemically stable carbon nanotubes as active elements. We show AFM and scanning electron microscope images of the successfully realized SWNTs embedded nanoelectromechanical systems (NEMS). Finally, we present electromechanical measurements of the suspended SWNT NEMS structures.  相似文献   

16.
Amine-terminated self-assembled monolayers (SAMs) have been shown to selectively adsorb semiconducting single-walled carbon nanotubes (sc-SWNTs). Previous studies have shown that when deposited by spin coating, the resulting nanotube networks (SWNTnts) can be strongly influenced by the charge state of the amine (primary, secondary, and tertiary). When the amine surfaces were exposed to varying pH solutions, the conductivity and overall quality of the resulting fabricated networks were altered. Atomic force microscopy (AFM) topography had shown that the density of the SWNTnts was reduced as the amine protonation decreased, indicating that the electrostatic attraction between the SWNTs in solution and the surface influenced the adsorption. Simultaneously, μ-Raman analysis had suggested that when exposed to more basic conditions, the resulting networks were enhanced with sc-SWNTs. To directly confirm this enhancement, Ti/Pd contacts were deposited and devices were tested in air. Key device characteristics were found to match the enhancement trends previously observed by spectroscopy. For the primary and secondary amines, on/off current ratios were commensurate with the Raman trends in metallic contribution, while no trends were observed on the tertiary amine (due to weaker interactions). Finally, differing SWNT solution volumes were used to compensate for adsorption differences and yielded identical SWNTnt densities on the various pH-treated samples to eliminate the influence of network density. These results further the understanding of the amine-SWNT interaction during the spin coating process. Overall, we provide a convenient route to provide SWNT-based TFTs with highly tunable electronic charge transport through better understanding of the influence of these specific interactions.  相似文献   

17.
There is an explosive interest in 1D nanostructured materials for biological sensors. Among these nanometer‐scale materials, single‐walled carbon nanotubes (SWNTs) offer the advantages of possible biocompatibility, size compatibility, and sensitivity towards minute electrical perturbations. In particular, because of these inherent qualities, changes in SWNT conductivity have been explored in order to study the interaction of biomolecules with SWNTs. This Review discusses these interactions, with a focus on carbon nanotube field‐effect transistors (NTFETs). Recent examples of applications of NTFET devices for detection of proteins, antibody–antigen assays, DNA hybridization, and enzymatic reactions involving glucose are summarized. Examples of complementary techniques, such as microscopy and spectroscopy, are covered as well.  相似文献   

18.
Fluorescent nanomaterials are expected to revolutionize medical diagnostic, imaging, and therapeutic tools due to their superior optical and structural properties. Their inefficient water solubility, cell permeability, biodistribution, and high toxicity, however, limit the full potential of their application. To overcome these obstacles, a water‐soluble, fluorescent, cytocompatible polymer—single‐walled carbon nanotube (SWNT) complex is introduced for bioimaging applications. The supramolecular complex consists of an alkylated polymer conjugated with neutral hydroxylated or charged sulfated dendronized perylene bisimides (PBIs) and SWNTs as a general immobilization platform. The polymer backbone solubilizes the SWNTs, decorates them with fluorescent PBIs, and strongly improves their cytocompatibility by wrapping around the SWNT scaffold. In photophysical measurements and biological in vitro studies, sulfated complexes exhibit superior optical properties, cellular uptake, and intracellular staining over their hydroxylated analogs. A toxicity assay confirms the highly improved cytocompatibility of the polymer‐wrapped SWNTs toward surfactant‐solubilized SWNTs. In microscopy studies the complexes allow for the direct imaging of the SWNTs' cellular uptake via the PBI and SWNT emission using the 1st and 2nd optical window for bioimaging. These findings render the polymer‐SWNT complexes with nanometer size, dual fluorescence, multiple charges, and high cytocompatibility as valuable systems for a broad range of fluorescence bioimaging studies.  相似文献   

19.
Carbon nanotube ink chemistry and the proper formulation are crucial for direct-write printing of nanotubes. Moreover, the correct surface chemistry of the self-assembled monolayers that assist the direct deposition of carbon nanotubes onto the substrate is equally important to preserve orientation of the printed carbon nanotubes. We report that the successful formulation of two single walled carbon nanotube (SWNT) inks yields a consistent, homogenous printing pattern possessing the requisite viscosities needed for flow through the microcapillary nozzles of the inkjet printer with fairly modest drying times. The addition of an aqueous sodium silicate allows for a reliable method for forming a uniform carbon nanotube network deposited directly onto unfunctionalized surfaces such as glass or quartz via inkjet deposition. Furthermore, this sodium silicate ingredient helps preserve applied orientation to the printed SWNT solution. Sheet resistivity of this carbon nanotube ink formula printed on quartz decreases as a function of passes and is independent of the substrate. SWNTs were successfully patterned on Au. This amine-based surface chemistry dramatically helps improve the isolation stabilization of the printed SWNTs as seen in the atomic force microscopy (AFM) image. Lastly, using our optimized SWNT ink formula and waveform parameters in the Fuji materials printer, we are able to directly write/print SWNTs into 2D patterns. Dried ink pattern expose and help orient roped carbon nanotubes that are suspended in ordered arrays across the cracks.  相似文献   

20.
An in situ electron microscopy study is presented of adhesion interactions between single‐walled carbon nanotubes (SWNTs) by mechanically peeling thin free‐standing SWNT bundles using in situ nanomanipulation techniques inside a high‐resolution scanning electron microscope. The in situ measurements clearly reveal the process of delaminating one SWNT bundle from its originally bound SWNT bundle in a controlled‐displacement manner and capture the deformation curvature of the delaminated SWNT bundle during the peeling process. A theoretical model based on nonlinear elastica theory is employed to interpret the measured deformation curvatures of the SWNTs and to quantitatively evaluate the peeling force and the adhesion strength between bundled SWNTs. The estimated adhesion energy per unit length for each pair of neighboring tubes in the peeling interface based on our peeling experiments agrees reasonably well with the theoretical value. This in situ peeling technique provides a potential new method for separating bundled SWNTs without compromising their material properties. The combined peeling experiments and modeling presented in this paper will be very useful to the study of the adhesion interactions between SWNTs and their nonlinear mechanical behaviors in the large‐displacement regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号