首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hybrid organic–inorganic metal halide perovskite semiconductors provide opportunities and challenges for the fabrication of low‐cost thin‐film photovoltaic devices. The opportunities are clear: the power conversion efficiency (PCE) of small‐area perovskite photovoltaics has surpassed many established thin‐film technologies. However, the large‐scale solution‐based deposition of perovskite layers introduces challenges. To form perovskite layers, precursor solutions are coated or printed and these must then be crystallized into the perovskite structure. The nucleation and crystal growth must be controlled during film formation and subsequent treatments in order to obtain high‐quality, pin‐hole‐free films over large areas. A great deal of understanding regarding material engineering during the perovskite film formation process has been gained through spin‐coating studies. Based on this, significant progress has been made on transferring material engineering strategies to processes capable of scale‐up, such as blade coating, spray coating, inkjet printing, screen printing, relief printing, and gravure printing. Here, an overview is provided of the strategies that led to devices deposited by these scalable techniques with PCEs as high as 21%. Finally, the opportunities to fully close the shrinking gap to record spin‐coated solar cells and to scale these efficiencies to large areas are highlighted.  相似文献   

2.
Quantum dots light‐emitting diodes (QLEDs) have attracted much interest owing to their compatibility with low‐cost inkjet printing technology and potential for use in large‐area full‐color pixelated display. However, it is challenging to fabricate high efficiency inkjet‐printed QLEDs because of the coffee ring effects and inferior resistance to solvents from the underlying polymer film during the inkjet printing process. In this study, a novel crosslinkable hole transport material, 4,4′‐bis(3‐vinyl‐9H‐carbazol‐9‐yl)‐1,1′‐biphenyl (CBP‐V) which is small‐molecule based, is synthesized and investigated for inkjet printing of QLEDs. The resulting CBP‐V film after thermal curing exhibits excellent solvent resistance properties without any initiators. An added advantage is that the crosslinked CBP‐V film has a sufficiently low highest occupied molecular orbital energy level (≈?6.2 eV), high film compactness, and high hole mobility, which can thus promote the hole injection into quantum dots (QDs) and improve the charge carrier balance within the QD emitting layers. A red QLED is successfully fabricated by inkjet printing a CBP‐V and QDs bilayer. Maximum external quantum efficiency of 11.6% is achieved, which is 92% of a reference spin‐coated QLED (12.6%). This is the first report of such high‐efficiency inkjet‐printed multilayer QLEDs and demonstrates a unique and effective approach to inkjet printing fabrication of high‐performance QLEDs.  相似文献   

3.
The printing of large‐area organic solar cells (OSCs) has become a frontier for organic electronics and is also regarded as a critical step in their industrial applications. With the rapid progress in the field of OSCs, the highest power conversion efficiency (PCE) for small‐area devices is approaching 15%, whereas the PCE for large‐area devices has also surpassed 10% in a single cell with an area of ≈1 cm2. Here, the progress of this fast developing area is reviewed, mainly focusing on: 1) material requirements (materials that are able to form efficient thick active layer films for large‐area printing); 2) modular designs (effective designs that can suppress electrical, geometric, optical, and additional losses, leading to a reduction in the PCE of the devices, as a consequence of substrate area expansion); and 3) printing methods (various scalable fabrication techniques that are employed for large‐area fabrication, including knife coating, slot‐die coating, screen printing, inkjet printing, gravure printing, flexographic printing, pad printing, and brush coating). By combining thick‐film material systems with efficient modular designs exhibiting low‐efficiency losses and employing the right printing methods, the fabrication of large‐area OSCs will be successfully realized in the near future.  相似文献   

4.
3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid‐crystal elastomers, shape‐memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D‐printing hydrogel inks with programed bacterial cells as responsive components into large‐scale (3 cm), high‐resolution (30 μm) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D‐printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices.  相似文献   

5.
Cell printing has gained extensive attentions for the controlled fabrication of living cellular constructs in vitro. Various cell printing techniques are now being explored and developed for improved cell viability and printing resolution. Here an electro‐hydrodynamic cell printing strategy is developed with microscale resolution (<100 µm) and high cellular viability (>95%). Unlike the existing electro‐hydrodynamic cell jetting or printing explorations, insulating substrate is used to replace conventional semiconductive substrate as the collecting surface which significantly reduces the electrical current in the electro‐hydrodynamic printing process from milliamperes (>0.5 mA) to microamperes (<10 µA). Additionally, the nozzle‐to‐collector distance is fixed as small as 100 µm for better control over filament deposition. These features ensure high cellular viability and normal postproliferative capability of the electro‐hydrodynamically printed cells. The smallest width of the electro‐hydrodynamically printed hydrogel filament is 82.4 ± 14.3 µm by optimizing process parameters. Multiple hydrogels or multilayer cell‐laden constructs can be flexibly printed under cell‐friendly conditions. The printed cells in multilayer hydrogels kept alive and gradually spread during 7‐days culture in vitro. This exploration offers a novel and promising cell printing strategy which might benefit future biomedical innovations such as microscale tissue engineering, organ‐on‐a‐chip systems, and nanomedicine.  相似文献   

6.
Three-dimensional (3D) bioprinting, which is being increasingly used in tissue engineering, requires bioinks with tunable mechanical properties, biological activities, and mechanical strength for in vivo implantation. Herein, a growth-factor-holding poly(organophosphazene)-based thermo-responsive nanocomposite (TNC) bioink system is developed. The mechanical properties of the TNC bioink are easily controlled within a moderate temperature range (5–37 °C). During printing, the mechanical properties of the TNC bioink, which determine the 3D printing resolution, can be tuned by varying the temperature (15–30 °C). After printing, TNC bioink scaffolds exhibit maximum stiffness at 37 °C. Additionally, because of its shear-thinning and self-healing properties, TNC bioinks can be extruded smoothly, demonstrating good printing outcomes. TNC bioink loaded with bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta1 (TGF-β1), key growth factors for osteogenesis, is used to print a scaffold that can stimulate biological activity. A biological scaffold printed using TNC bioink loaded with both growth factors and implanted on a rat calvarial defect model reveals significantly improved bone regenerative effects. The TNC bioink system is a promising next-generation bioink platform because its mechanical properties can be tuned easily for high-resolution 3D bioprinting with long-term stability and its growth-factor holding capability has strong clinical applicability.  相似文献   

7.
Flexible planar micro‐supercapacitors (MSCs) with unique loose and porous nanofiber‐like electrode structures are fabricated by combining electrochemical deposition with inkjet printing. Benefiting from the resulting porous nanofiber‐like structures, the areal capacitance of the inkjet‐printed flexible planar MSCs is obviously enhanced to 46.6 mF cm?2, which is among the highest values ever reported for MSCs. The complicated fabrication process is successfully averted as compared with previously reported best‐performing planar MSCs. Besides excellent electrochemical performance, the resultant MSCs also show superior mechanical flexibility. The as‐fabricated MSCs can be highly bent to 180° 1000 times with the capacitance retention still up to 86.8%. Intriguingly, because of the remarkable patterning capability of inkjet printing, various modular MSCs in serial and in parallel can be directly and facilely inkjet‐printed without using external metal interconnects and tedious procedures. As a consequence, the electrochemical performance can be largely enhanced to better meet the demands of practical applications. Additionally, flexible serial MSCs with exquisite and aesthetic patterns are also inkjet‐printed, showing great potential in fashionable wearable electronics. The results suggest a feasible strategy for the facile and cost‐effective fabrication of high‐performance flexible MSCs via inkjet printing.  相似文献   

8.
Silver nanoparticle-based conductive tracks were inkjet printed using a piezoelectric drop-on-demand inkjet printer on a commercially available electronics grade fibre glass (E-glass) reinforced substrate material, and the experimental results have been summarised. Ink jetting was done on two variants of this substrate material, viz. etched and unetched, to determine the influence of substrate surface topography on adhesion and accuracy of the printed tracks. The pull-off adhesion test method was used to quantify adhesive strength. The dependence of the pull-off test results on local geometry of the test area are illustrated with the aid of scanning electron microscope images and interferometer studies. Based on the outcomes of the experiments, conclusions concerning the suitable surface topography for inkjet printing have been arrived at.  相似文献   

9.
Bioprinting can be defined as the art of combining materials and cells to fabricate designed, hierarchical 3D hybrid constructs. Suitable materials, so called bioinks, have to comply with challenging rheological processing demands and rapidly form a stable hydrogel postprinting in a cytocompatible manner. Gelatin is often adopted for this purpose, usually modified with (meth‐)acryloyl functionalities for postfabrication curing by free radical photopolymerization, resulting in a hydrogel that is cross‐linked via nondegradable polymer chains of uncontrolled length. The application of allylated gelatin (GelAGE) as a thiol–ene clickable bioink for distinct biofabrication applications is reported. Curing of this system occurs via dimerization and yields a network with flexible properties that offer a wider biofabrication window than (meth‐)acryloyl chemistry, and without additional nondegradable components. An in‐depth analysis of GelAGE synthesis is conducted, and standard UV‐initiation is further compared with a recently described visible‐light‐initiator system for GelAGE hydrogel formation. It is demonstrated that GelAGE may serve as a platform bioink for several biofabrication technologies by fabricating constructs with high shape fidelity via lithography‐based (digital light processing) 3D printing and extrusion‐based 3D bioprinting, the latter supporting long‐term viability postprinting of encapsulated chondrocytes.  相似文献   

10.
The 3D bioprinting can controllably deposit bioink containing cells and fabricate complex bionic tissue structures in a fast and scalable way, which is expected to completely change the scenario of clinical organ transplantation. Bioprinting holds broad application prospect in tissue engineering, life sciences, and clinical medicine. In the process of 3D bioprinting, bioink, as the carrier of cells and bioactive substances, influences cell activity and accuracy of organ structure after printing. To better understand and design bioink, in this review, the concept, development, and basic composition of bioink are introduced, while focusing on the advantages and disadvantages of various biomaterials, and the use of common cells and biomolecules that constitute bioink. In addition, the properties and applications of various stimuli-responsive smart materials for 4D bioprinting are mentioned. The challenges and development trends of bioink are also summarized.  相似文献   

11.
In recent years, there has been tremendous progress in the research and development of printable electronics on mechanically flexible substrates based on inorganic active components, which provide high performances and stable device operations at low cost. In this regard, various approaches have been developed for the direct transfer or printing of micro‐ and nanoscale, inorganic semiconductors on substrates. In this review article, we focus on the recent advancements in the large‐scale integration of single crystalline, inorganic‐nanowire (NW) arrays for electronic and sensor applications, specifically involving the contact printing of NWs at defined locations. We discuss the advantages, limitations, and the state‐of‐the‐art of this technology, and present an integration platform for future printable, heterogeneous‐sensor circuitry based on NW parallel arrays.  相似文献   

12.
本文介绍了喷墨打印纸技术,探讨了带动喷墨打印纸迅速发展的原因及喷墨墨水对喷墨打印纸的要求,分析了国内外喷墨打印纸现状和市场前景,指出喷墨相纸是数字化成像技术发展方向之一,特别是高光相纸和RC相纸的发展已经进入一个全面增长时期,市场前景十分广阔。  相似文献   

13.
Inkjet printing is considered to be a key technology in the field of defined polymer deposition. This article provides an introduction to inkjet printing technology and a short overview of the available instrumentation. Examples of polymer inkjet printing are given, including the manufacturing of multicolor polymer light‐emitting diode displays, polymer electronics, three‐dimensional printing, and oral dosage forms for controlled drug release. Special emphasis is placed upon the utilized polymers and conditions, such as polymer structure, molar mass, solvents, and concentration. Studies on viscoelastic fluid jets and the formation of viscoelastic droplets under gravity indicate that strain hardening is the key parameter that determines the inkjet printability of polymer solutions.  相似文献   

14.
The use of organic/inorganic composite inks in the Drop on Demand inkjet printing technology is a promising as well as demanding approach for the fabrication of composite thick films. Therefore, a versatile ceramic/polymer composite ink system for inkjet printing is developed in this study, containing Ba0.6Sr0.4TiO3 (BST) and poly(methyl methacrylate) (PMMA). When developing such inks suitable for a one‐step fabrication, the major challenge is to fulfill the requirements of the inkjet printing technology and to obtain homogeneous surface morphologies after drying. Thus, possible influencing factors like the solvent composition, the solids content, and the ratio of ceramic to polymer are investigated to obtain a detailed knowledge for the general ink development. The fluid mechanical properties, viscosity, density, and surface tension are characterized. The main focus of this study lies on the drying behavior of the different inks, with the interactions of the ceramic particles, and the dissolved polymer molecules being highlighted. Furthermore, the drying behavior depending on the ink composition is shown. This study provides new insights into the possibility of using composite inks for the inkjet printing process and the fabrication of printed composite thick films in a single process step.
  相似文献   

15.
Cellular membranes are composed of a variety of lipids in different amounts and proportions, and alterations of them are usually closely related to various diseases. To reveal the intercellular heterogeneity of the lipid variation, an integrated microfluidic system is designed, which consists of droplet‐based inkjet printing, dielectrophoretic electrodes, and de‐emulsification interface to achieve on‐line single‐cell encapsulation, manipulation, and mass spectrometry (MS) detection. This integrated system effectively improves the single‐cell encapsulation rate, and meanwhile reduces the matrix interference and continuous oil phase interference to the MS detection. Using this system, the heterogeneities between the normal and cancer cells are compared, and the heterogeneity of the same cells before and after the drug treatment changed obviously, indicating that this system can be used as a promising tool for studying the link between the alterations of lipid homeostasis and various diseases.  相似文献   

16.
Diamond is a highly desirable material for state‐of‐the‐art micro‐electromechanical (MEMS) devices, radio‐frequency filters and mass sensors, due to its extreme properties and robustness. However, the fabrication/integration of diamond structures into Si‐based components remain costly and complex. In this work, a lithography‐free, low‐cost method is introduced to fabricate diamond‐based micro‐resonators: a modified home/office desktop inkjet printer is used to locally deposit nanodiamond ink as ?50–60 µm spots, which are grown into ≈1 µm thick nanocrystalline diamond film disks by chemical vapor deposition, and suspended by reactive ion etching. The frequency response of the fabricated structures is analyzed by laser interferometry, showing resonance frequencies in the range of ≈9–30 MHz, with Q ‐factors exceeding 104, and (f0 × Q) figure of merit up to ≈2.5 × 1011 Hz in vacuum. Analysis in controlled atmospheres shows a clear dependence of the Q‐factors on gas pressure up until 1 atm, with Q ∝ 1/P. When applied as mass sensors, the inkjet‐printed diamond resonators yield mass responsivities up to 981 Hz fg?1 after Au deposition, and ultrahigh mass resolution up to 278 ± 48 zg, thus outperforming many similar devices produced by traditional top‐down, lithography‐based techniques. In summary, this work demonstrates the fabrication of functional high‐performance diamond‐based micro‐sensors by direct inkjet printing.  相似文献   

17.
The blossoming of organic solar cells (OSCs) has triggered enormous commercial applications, due to their high‐efficiency, light weight, and flexibility. However, the lab‐to‐manufacturing translation of the praisable performance from lab‐scale devices to industrial‐scale modules is still the Achilles' heel of OSCs. In fact, it is urgent to explore the mechanism of morphological evolution in the bulk heterojunction (BHJ) with different coating/printing methods. Here, a general approach to upscale flexible organic photovoltaics to module scale without obvious efficiency loss is demonstrated. The shear impulse during the coating/printing process is first applied to control the morphology evolution of the BHJ layer for both fullerene and nonfullerene acceptor systems. A quantitative transformation factor of shear impulse between slot‐die printing and spin‐coating is detected. Compelling results of morphological evolution, molecular stacking, and coarse‐grained molecular simulation verify the validity of the impulse translation. Accordingly, the efficiency of flexible devices via slot‐die printing achieves 9.10% for PTB7‐Th:PC71BM and 9.77% for PBDB‐T:ITIC based on 1.04 cm2 . Furthermore, 15 cm2 flexible modules with effective efficiency up to 7.58% (PTB7‐Th:PC71BM) and 8.90% (PBDB‐T:ITIC) are demonstrated with satisfying mechanical flexibility and operating stability. More importantly, this work outlines the shear impulse translation for organic printing electronics.  相似文献   

18.
The last decade has witnessed the rapid development of inkjet printing as an attractive bottom‐up microfabrication technology due to its simplicity and potentially low cost. The wealth of printable materials has been key to its widespread adoption in organic optoelectronics and biotechnology. However, its implementation in nanophotonics has so far been limited by the coarse resolution of conventional inkjet‐printing methods. In addition, the low refractive index of organic materials prevents the use of “soft‐photonics” in applications where strong light confinement is required. This study introduces a hybrid approach for creating and fine tuning high‐Q nanocavities, involving the local deposition of an organic ink on the surface of an inorganic 2D photonic crystal template using a commercially available high‐resolution inkjet printer. The controllability of this approach is demonstrated by tuning the resonance of the printed nanocavities by the number of printer passes and by the fabrication of photonic crystal molecules with controllable splitting. The versatility of this method is evidenced by the realization of nanocavities obtained by surface deposition on a blank photonic crystal. A new method for a free‐form, high‐density, material‐independent, and high‐throughput fabrication technique is thus established with a manifold of opportunities in photonic applications.  相似文献   

19.
Regioregular poly(3‐alkylthiophene) (P3AT) polymers have been previously reported for the selective, high‐yield dispersion of semiconducting single‐walled carbon nanotubes (SWCNTs) in toluene. Here, five alternative solvents are investigated, namely, tetrahydrofuran, decalin, tetralin, m‐xylene, and o‐xylene, for the dispersion of SWCNTs by poly(3‐dodecylthiophene) P3DDT. The dispersion yield could be increased to over 40% using decalin or o‐xylene as the solvents while maintaining high selectivity towards semiconducting SWCNTs. Molecular dynamics (MD) simulations in explicit solvents are used to explain the improved sorting yield. In addition, a general mechanism is proposed to explain the selective dispersion of semiconducting SWCNTs by conjugated polymers. The possibility to perform selective sorting of semiconducting SWCNTs using various solvents provides a greater diversity of semiconducting SWCNT ink properties, such as boiling point, viscosity, and surface tension as well as toxicity. The efficacy of these new semiconducting SWCNT inks is demonstrated by using the high boiling point and high viscosity solvent tetralin for inkjet‐printed transistors, where solvent properties are more compatible with the inkjet printing head and improved droplet formation.  相似文献   

20.
The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk‐heterojunction organic solar cells (OSCs) based on nanocomposites of π‐conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost‐effective, stable, and high‐performance photovoltaic modules fabricated on large‐area flexible plastic substrates via high‐volume/throughput roll‐to‐roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large‐scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state‐of‐the‐art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号