首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Multifunctional nanomaterials with efficient tumor‐targeting and high antitumor activity are highly anticipated in the field of cancer therapy. In this work, a synergetic tumor‐targeted, chemo‐photothermal combined therapeutic nanoplatform based on a dynamically PEGylated, borate‐coordination‐polymer‐coated polydopamine nanoparticle (PDA@CP‐PEG) is developed. PEGylation on the multifunctional nanoparticles is dynamically achieved via the reversible covalent interaction between the surface phenylboronic acid (PBA) group and a catechol‐containing poly(ethylene glycol) (PEG) molecule. Due to the acid‐labile PBA/catechol complex and the weak‐acid‐stable PBA/sialic acid (SA) complex, the nanoparticles can exhibit a synergetic targeting property for the SA‐overexpressed tumor cells, i.e., the PEG‐caused “passive targeting” and PBA‐triggered “active targeting” under the weakly acidic tumor microenvironment. In addition, the photothermal effect of the polydopamine core and the doxorubicin‐loading capacity of the porous coordination polymer layer endow the nanoparticles with the potential for chemo‐photothermal combination therapy. As expected, the in vitro and in vivo studies both verify that the multifunctional nanoparticles possess relatively lower systematic toxicity, efficient tumor targeting ability, and excellent chemo‐photothermal activity for tumor inhibition. It is believed that these multifunctional nanoparticles with synergetic tumor targeting property and combined therapeutic strategies would provide an insight into the design of a high‐efficiency antitumor nanoplatform for potential clinical applications.  相似文献   

2.
In this work, a matrix metalloproteinase (MMP)‐triggered tumor targeted mesoporous silica nanoparticle (MSN) is designed to realize near‐infrared (NIR) photothermal‐responsive drug release and combined chemo/photothermal tumor therapy. Indocyanine green (ICG) and doxorubicin (DOX) are both loaded in the MSN modified with thermal‐cleavable gatekeeper (Azo‐CD), which can be decapped by ICG‐generated hyperthermia under NIR illumination. A peptidic sequence containing a short PEG chain, matrix metalloproteinase (MMP) substrate (PLGVR) and tumor cell targeting motif (RGD) are further decorated on the MSN via a host–guest interaction. The PEG chain can protect the MSN during the circulation and be cleaved off in the tumor tissues with overexpressed MMP, and then the RGD motif is switched on to target tumor cells. After the tumor‐triggered targeting process, the NIR irradiation guided by ICG fluorescence can trigger cytosol drug release and realize combined chemo/photothermal therapy.  相似文献   

3.
Light‐triggered drug delivery based on near‐infrared (NIR)‐mediated photothermal nanocarriers has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, a new paradigm of light‐responsive drug carrier that doubles as a photothermal agent is reported based on the NIR light‐absorber, Rb x WO3 (rubidium tungsten bronze, Rb‐TB) nanorods. With doxorubicin (DOX) payload, the DOX‐loaded Rb‐TB composite (Rb‐TB‐DOX) simultaneously provides a burst‐like drug release and intense heating effect upon 808‐nm NIR light exposure. MTT assays show the photothermally enhanced antitumor activity of Rb‐TB‐DOX to the MCF‐7 cancer cells. Most remarkably, Rb‐TB‐DOX combined with NIR irradiation also shows dramatically enhanced chemotherapeutic effect to DOX‐resistant MCF‐7 cells compared with free DOX, demonstrating the enhanced efficacy of combinational chemo‐photothermal therapy for potentially overcoming drug resistance in cancer chemotherapy. Furthermore, in vivo study of combined chemo‐photothermal therapy is also conducted and realized on pancreatic (Pance‐1) tumor‐bearing nude mice. Apart from its promise for cancer therapy, the as‐prepared Rb‐TB can also be employed as a new dual‐modal contrast agent for photoacoustic tomography and (PAT) X‐ray computed tomography (CT) imaging because of its high NIR optical absorption capability and strong X‐ray attenuation ability, respectively. The results presented in the current study suggest promise of the multifunctional Rb x WO3 nanorods for applications in cancer theranostics.  相似文献   

4.
Nanotechnology‐based drug delivery has a great potential to revolutionize cancer treatment by enhancing anticancer drug efficacy and reducing drug toxicity. Here, a bioinspired nano‐prodrug (BiNp) assembled by an antineoplastic peptidic derivative (FA‐KLA‐Hy‐DOX), a folate acid (FA)‐incorporated proapoptotic peptide (KLAKLAK)2 (KLA) to doxorubicin (DOX) via an acid‐labile hydrozone bond (Hy) is constructed. The hydrophobic antineoplastic agent DOX is efficiently shielded in the core of nano‐prodrug. With FA targeting moieties on the surface, the obtained BiNp shows significant tumor‐targeting ability and enhances the specific uptake of cancer cells. Upon the trigger by the intracellular acidic microenvironment of endosomes, the antineoplastic agent DOX is released on‐demand and promotes the apoptosis of cancer cells. Simultaneously, the liberated FA‐KLA can induce the dysfunction of mitochondria and evoke mitochondria‐dependent apoptosis. In vitro and in vivo results show that the nano‐prodrug BiNp with integrated programmed functions exhibits remarkable inhibition of tumor and achieves a maximized therapeutic efficiency with a minimized side effect.  相似文献   

5.
Drug resistance is the greatest challenge in clinical cancer chemotherapy. Co‐delivery of chemotherapeutic drugs and siRNA to tumor cells is a vital means to silence drug resistant genes during the course of cancer chemotherapy for an improved chemotherapeutic effect. This study aims at effective co‐delivery of siRNA and anticancer drugs to tumor cells. A ternary block copolymer PEG‐PAsp(AED)‐PDPA consisting of pH‐sensitive poly(2‐(diisopropyl amino)ethyl methacrylate) (PDPA), reduction‐sensitive poly(N‐(2,2′‐dithiobis(ethylamine)) aspartamide) PAsp(AED), and poly(ethylene glycol) (PEG) is synthesized and assembled into a core‐shell structural micelle which encapsulated doxorubicin (DOX) in its pH‐sensitive core and the siRNA‐targeting anti‐apoptosis BCL‐2 gene (BCL‐2 siRNA) in a reduction‐sensitive interlayer. At the optimized size and zeta potential, the nanocarriers loaded with DOX and BCL‐2 siRNA may effectively accumulate in the tumor site via blood circulation. Moreover, the dual stimuli‐responsive design of micellar carriers allows microenviroment‐specific rapid release of both DOX and BCL‐2 siRNA inside acidic lysosomes with enriched reducing agent, glutathione (GSH, up to 10 mm ). Consequently, the expression of anti‐apoptotic BCL‐2 protein induced by DOX treatment is significantly down‐regulated, which results in synergistically enhanced apoptosis of human ovarian cancer SKOV‐3 cells and thus dramatically inhibited tumor growth.  相似文献   

6.
A multifunctional nanoparticle based on gold nanorod (GNR), utilizing mRNA triggered chemo‐drug release and near‐infrared photoacoustic effect, is developed for a combined chemo‐photoacoustic therapy. The constructed nanoparticle (GNR‐DNA/FA:DOX) comprises three functional components: (i) GNR as the drug delivery platform and photoacoustic effect enhancer; (ii) toehold‐possessed DNA dressed on the GNR to load doxorubicin (DOX) to implement a tumor cell specific chemotherapy; and (iii) folate acid (FA) modified on GNR to guide the nanoparticle to target tumor cells. The results show that, upon an effective and specific delivery of the nanoparticles to the tumor cells with overexpressed folate receptors, the cytotoxic DOX loaded on the GNR‐DNA nanoplatform can be released through DNA displacement reaction in melanoma‐associated antigen gene mRNA expressed cells. With 808 nm pulse laser irradiation, the photoacoustic effect of the GNR leads to a direct physical damage to the cells. The combined treatment of the two modalities can effectively destroy tumor cells and eradicate the tumors with two distinctively different and supplementing mechanisms. With the nanoparticle, photoacoustic imaging is successfully performed in situ to monitor the drug distribution and tumor morphology for therapeutical guidance. With further in‐depth investigation, the proposed nanoparticle may provide an effective and safe alternative cancer treatment modality.  相似文献   

7.
Irinotecan is one of the main chemotherapeutic agents for colorectal cancer (CRC). MicroRNA‐200 (miR‐200) has been reported to inhibit metastasis in cancer cells. Herein, pH‐sensitive and peptide‐modified liposomes and solid lipid nanoparticles (SLN) are designed for encapsulation of irinotecan and miR‐200, respectively. These peptides include one cell‐penetrating peptide, one ligand targeted to tumor neovasculature undergoing angiogenesis, and one mitochondria‐targeting peptide. The peptide‐modified nanoparticles are further coated with a pH‐sensitive PEG‐lipid derivative with an imine bond. These specially‐designed nanoparticles exhibit pH‐responsive release, internalization, and intracellular distribution in acidic pH of colon cancer HCT116 cells. These nanoparticles display low toxicity to blood and noncancerous intestinal cells. Delivery of miR‐200 by SLN further increases the cytotoxicity of irinotecan‐loaded liposomes against CRC cells by triggering apoptosis and suppressing RAS/β‐catenin/ZEB/multiple drug resistance (MDR) pathways. Using CRC‐bearing mice, the in vivo results further indicate that irinotecan and miR‐200 in pH‐responsive targeting nanoparticles exhibit positive therapeutic outcomes by inhibiting colorectal tumor growth and reducing systemic toxicity. Overall, successful delivery of miR and chemotherapy by multifunctional nanoparticles may modulate β‐catenin/MDR/apoptosis/metastasis signaling pathways and induce programmed cancer cell death. Thus, these pH‐responsive targeting nanoparticles may provide a potential regimen for effective treatment of colorectal cancer.  相似文献   

8.
Targeting peptide‐modified magnetic graphene‐based mesoporous silica (MGMSPI) are synthesized, characterized, and developed as a multifunctional theranostic platform. This system exhibits many merits, such as biocompatibility, high near‐infrared photothermal heating, facile magnetic separation, large T2 relaxation rates (r2), and a high doxorubicin (DOX) loading capacity. In vitro and in vivo results demonstrate that DOX‐loaded MGMSPI (MGMSPID) can integrate magnetic resonance imaging, dual‐targeting recognition (magnetic targeting and receptor‐mediated active targeting), and chemo‐photothermal therapy into a single system for a visualized‐synergistic therapy of glioma. In addition, it is observed that the MGMSPID system has heat‐stimulated, pH‐responsive, sustained release properties. All of these characteristics would provide a robust multifunctional theranostic platform for visualized glioma therapy.  相似文献   

9.
A simple synthetic route for the preparation of functional nanoscale graphene oxide (NGO), a novel nanocarrier for the loading and targeted delivery of anticancer drugs, is reported. The NGO is functionalized with sulfonic acid groups, which render it stable in physiological solution, followed by covalent binding of folic acid (FA) molecules to the NGO, thus allowing it to specifically target MCF‐7 cells, human breast cancer cells with FA receptors. Furthermore, controlled loading of two anticancer drugs, doxorubicin (DOX) and camptothecin (CPT), onto the FA‐conjugated NGO (FA–NGO) via π–π stacking and hydrophobic interactions is investigated. It is demonstrated that FA–NGO loaded with the two anticancer drugs shows specific targeting to MCF‐7 cells, and remarkably high cytotoxicity compared to NGO loaded with either DOX or CPT only. Considering that the combined use of two or more drugs, a widely adopted clinical practice, often displays much better therapeutic efficacy than that of a single drug, the controlled loading and targeted delivery of mixed anticancer drugs using these graphene‐based nanocarriers may find widespread application in biomedicine.  相似文献   

10.
A high‐sensitivity and low‐power theranostic nanosystem that combines with synergistic photothermal therapy and surface‐enhanced Raman scattering (SERS) mapping is constructed by mesoporous silica self‐assembly on the reduced graphene oxide (rGO) nanosheets with nanogap‐aligned gold nanoparticles (AuNPs) encapsulated and arranged inside the nanochannels of the mesoporous silica layer. Rhodamine 6G (R6G) as a Raman reporter is then encapsulated into the nanochannels and anti‐epidermal growth factor receptor (EGFR) is conjugated on the nanocomposite surface, defined as anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G, where PEG is polyethylene glycol and CPSS is carbon porous silica nanosheets. SERS spectra results show that rGO@CPSS‐Au‐R6G enhances 5 × 106 magnification of the Raman signals and thus can be applied in the noninvasive cell tracking. Furthermore, it displays high sensitivity (detection limits: 10?8m R6G solution) due to the “hot spots” effects by the arrangements of AuNPs in the nanochannels of mesoporous silica. The highly selective targeting of overexpressing EGFR lung cancer cells (A549) is observed in the anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G, in contrast to normal cells (MRC‐5). High photothermal therapy efficiency with a low power density (0.5 W cm?2) of near‐infrared laser can be achieved because of the synergistic effect by conjugated AuNPs and rGO nanosheets. These results demonstrate that the anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G is an excellent new theranostic nanosystem with cell targeting, cell tracking, and photothermal therapy capabilities.  相似文献   

11.
In the anti‐cancer war, there are three main obstacles resulting in high mortality and recurrence rate of cancers: the severe toxic side effect of anti‐cancer drugs to normal tissues due to the lack of tumor‐selectivity, the multi‐drug resistance (MDR) to free chemotherapeutic drugs and the deadly metastases of cancer cells. The development of state‐of‐art nanomedicines based on mesoporous silica nanoparticles (MSNs) is expected to overcome the above three main obstacles. In the view of the fast development of anti‐cancer strategy, this review highlights the most recent advances of MSN anti‐cancer nanomedicines in enhancing chemotherapeutic efficacy, overcoming the MDR and inhibiting metastasis. Furthermore, we give an outlook of the future development of MSNs‐based anti‐cancer nanomedicines, and propose several innovative and forward‐looking anti‐cancer strategies, including tumor tissue?cell?nuclear successionally targeted drug delivery strategy, tumor cell‐selective nuclear‐targeted drug delivery strategy, multi‐targeting and multi‐drug strategy, chemo‐/radio‐/photodynamic‐/ultrasound‐/thermo‐combined multi‐modal therapy by virtue of functionalized hollow/rattle‐structured MSNs.  相似文献   

12.
Drug delivery strategies possessing selectivity for cancer cells are eagerly needed in therapy of metastatic breast cancer. In this study, the chemotherapeutic agent, docetaxel (DTX), is conjugated onto heparan sulfate (HS). Aspirin (ASP), which has the activity of anti‐metastasis and enhancing T cells infiltration in tumors, is encapsulated into the HS‐DTX micelle. Then the cationic polyethyleneimine (PEI)‐polyethylene glycol (PEG) copolymer binds to HS via electrostatic force, forming the ASP‐loaded HS‐DTX micelle (AHD)/PEI‐PEG nanocomplex (PAHD). PAHD displays long circulation behavior in blood due to the PEG shell. Under the tumor microenvironment with weakly acidic pH, PEI‐PEG separates from AHD, and the free cationic PEI‐PEG facilitates the cellular uptake of AHD by increasing permeability of cell membranes. Then the overexpressed heparanase degrades HS, releasing ASP and DTX. PAHD shows specific toxicity toward tumor cells but not normal cells, with advanced activity of inhibiting tumor growth and lung metastasis in 4T1 tumor‐bearing mice. The number of CD8+ T cells in tumor tissues is also increased. Therefore, PAHD can become an efficient drug delivery system for breast cancer treatment.  相似文献   

13.
Smart nanoparticles are increasingly important in a variety of applications such as cancer therapy. However, it is still a major challenge to develop light‐responsive nanoparticles that can maximize the potency of synergistic thermo‐chemotherapy under light irradiation. Here, spatially confined cyanine‐anchored silica nanochannels loaded with chemotherapeutic doxorubicin (CS‐DOX‐NCs) for light‐driven synergistic cancer therapy are introduced. CS‐DOX‐NCs possess a J‐type aggregation conformation of cyanine dye within the nanochannels and encapsulate doxorubicin through the π–π interaction with cyanine dye. Under near‐infrared light irradiation, CS‐DOX‐NCs produce the enhanced photothermal conversion efficiency through the maximized nonradiative transition of J‐type Cypate aggregates, trigger the light‐driven drug release through the destabilization of temperature‐sensitive π–π interaction, and generate the effective intracellular translocation of doxorubicin from the lysosomes to cytoplasma through reactive oxygen species‐mediated lysosomal disruption, thereby causing the potent in vivo hyperthermia and intracellular trafficking of drug into cytoplasma at tumors. Moreover, CS‐DOX‐NCs possess good resistance to photobleaching and preferable tumor accumulation, facilitating severe photoinduced cell damage, and subsequent synergy between photothermal and chemotherapeutic therapy with tumor ablation. These findings provide new insights of light‐driven nanoparticles for synergistic cancer therapy.  相似文献   

14.
Graphene oxide (GO) has been extensively explored in nanomedicine for its excellent physiochemical, electrical, and optical properties. Here, polyethylene glycol (PEG) and polyethylenimine (PEI) are covalently conjugated to GO via amide bonds, obtaining a physiologically stable dual‐polymer‐functionalized nano‐GO conjugate (NGO‐PEG‐PEI) with ultra‐small size. Compared with free PEI and the GO‐PEI conjugate without PEGylation, NGO‐PEG‐PEI shows superior gene transfection efficiency without serum interference, as well as reduced cytotoxicity. Utilizing the NIR optical absorbance of NGO, the cellular uptake of NGO‐PEG‐PEI is shown to be enhanced under a low power NIR laser irradiation, owing to the mild photothermal heating that increases the cell membrane permeability without significantly damaging cells. As the results, remarkably enhanced plasmid DNA transfection efficiencies induced by the NIR laser are achieved using NGO‐PEG‐PEI as the light‐responsive gene carrier. More importantly, it is shown that our NGO‐PEG‐PEI is able to deliver small interfering RNA (siRNA) into cells under the control of NIR light, resulting in obvious down‐regulation of the target gene, Polo‐like kinase 1 (Plk1), in the presence of laser irradiation. This study is the first to use photothermally enhanced intracellular trafficking of nanocarriers for light‐controllable gene delivery. This work also encourages further explorations of functionalized nano‐GO as a photocontrollable nanovector for combined photothermal and gene therapies.  相似文献   

15.
A multifunctional platform is reported for synergistic therapy with controlled drug release, magnetic hyperthermia, and photothermal therapy, which is composed of graphene quantum dots (GQDs) as caps and local photothermal generators and magnetic mesoporous silica nanoparticles (MMSN) as drug carriers and magnetic thermoseeds. The structure, drug release behavior, magnetic hyperthermia capacity, photothermal effect, and synergistic therapeutic efficiency of the MMSN/GQDs nanoparticles are investigated. The results show that monodisperse MMSN/GQDs nanoparticles with the particle size of 100 nm can load doxorubicin (DOX) and trigger DOX release by low pH environment. Furthermore, the MMSN/GQDs nanoparticles can efficiently generate heat to the hyperthermia temperature under an alternating magnetic field or by near infrared irradiation. More importantly, breast cancer 4T1 cells as a model cellular system, the results indicate that compared with chemotherapy, magnetic hyperthermia or photothermal therapy alone, the combined chemo‐magnetic hyperthermia therapy or chemo‐photothermal therapy with the DOX‐loaded MMSN/GQDs nanosystem exhibits a significant synergistic effect, resulting in a higher efficacy to kill cancer cells. Therefore, the MMSN/GQDs multifunctional platform has great potential in cancer therapy for enhancing the therapeutic efficiency.  相似文献   

16.
Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR‐780 loaded pH‐responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine‐based biomimetic micellar shell and acid‐sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site‐specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX‐resistant MCF‐7/ADR cells. Meanwhile, the tumor site‐specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF‐7/ADR tumor growth in tumor‐bearing mice. These results demonstrate that the well‐designed IR‐780 loaded polymeric prodrug micelles for hyperthermia‐assisted site‐specific chemotherapy present an effective approach to reverse drug resistance.  相似文献   

17.
Progress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto‐plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic nanoheaters whose on‐site delivery can be improved by magnetic targeting, is proposed. Single and combined magneto‐ and photo‐thermal heating properties of Janus nanoparticles render them as compelling heating elements, depending on the nanoparticle dose, magnetic lobe size, and milieu conditions. In cancer cells, a much more effective effect is observed for photothermia compared to magnetic hyperthermia, while combination of the two modalities into a magneto‐photothermal treatment results in a synergistic cytotoxic effect in vitro. The high potential of the Janus nanoparticles for magnetic guiding confirms them to be excellent nanostructures for in vivo magnetically enhanced photothermal therapy, leading to efficient tumor growth inhibition.  相似文献   

18.
Energy metabolism abnormity is one of the most significant hallmarks of cancer. As a result, large amino acid transporter 1 (LAT1) is remarkably overexpressed in both blood‐brain‐barrier and glioma tumor cells, leading a rapid and sufficient substrate transportation. 3CDIT and 4CDIT are originally synthesized by modifying the existing most potent LAT1 substrate. 3CDIT is selected as its higher glioma‐targeting ability. Since the microenvironment variation in tumor cells is another important feature of cancer, a great disparity in adenosine‐5′‐triphosphate (ATP) and glutathione (GSH) levels between extracellular and intracellular milieu can provide good possibilities for dual‐responsive drug release in tumor cells. Doxorubicin (DOX) is successfully intercalated into the ATP aptamer DNA scaffolds, compressed by GSH‐responsive polymer pOEI, and modified with 3CDIT to obtain 3CDIT‐targeting pOEI/DOX/ATP aptamer nanoparticles (NPs). Enhanced NP accumulation and rapid GSH & ATP dual‐responsive DOX release in glioma are demonstrated both in vitro and in vivo. More efficient therapeutic effects are shown with 3CDIT‐targeting pOEI/DOX/ATP aptamer NPs than free DOX and no systemic toxicity is observed. Therefore, glioma‐targeting delivery and GSH & ATP dual‐responsive release guarantee an adequate DOX accumulation within tumor cells and ensure a safe and efficient chemotherapy for glioma.  相似文献   

19.
Cell adhesion of nanosystems is significant for efficient cellular uptake and drug delivery in cancer therapy. Herein, a near‐infrared (NIR) light‐driven biomimetic nanomotor is reported to achieve the improved cell adhesion and cellular uptake for synergistic photothermal and chemotherapy of breast cancer. The nanomotor is composed of carbon@silica (C@SiO2) with semi‐yolk@spiky‐shell structure, loaded with the anticancer drug doxorubicin (DOX) and camouflaged with MCF‐7 breast cancer cell membrane (i.e., mC@SiO2@DOX). Such biomimetic mC@SiO2@DOX nanomotors display efficient self‐thermophoretic propulsion due to a thermal gradient generated by asymmetrically spatial distribution. Moreover, the MCF‐7 cancer cell membrane coating can remarkably reduce the bioadhesion of nanomotors in biological medium and exhibit highly specific self‐recognition of the source cell line. The combination of effective propulsion and homologous targeting dramatically improves cell adhesion and the resultant cellular uptake efficiency in vitro from 26.2% to 67.5%. Therefore, the biomimetic mC@SiO2@DOX displays excellent synergistic photothermal and chemotherapy with over 91% MCF‐7 cell growth inhibition rate. Such smart design of the fuel‐free, NIR light‐powered biomimetic nanomotor may pave the way for the application of self‐propelled nanomotors in biomedicine.  相似文献   

20.
Responsive multifunctional organic/inorganic nanohybrids are promising for effective and precise imaging‐guided therapy of cancer. In this work, a near‐infrared (NIR)‐triggered multifunctional nanoplatform comprising Au nanorods (Au NRs), mesoporous silica, quantum dots (QDs), and two‐armed ethanolamine‐modified poly(glycidyl methacrylate) with cyclodextrin cores (denoted as CD‐PGEA) has been successfully fabricated for multimodal imaging‐guided triple‐combination treatment of cancer. A hierarchical hetero‐structure is first constructed via integration of Au NRs with QDs through a mesoporous silica intermediate layer. The X‐ray opacity and photoacoustic (PA) property of Au NRs are utilized for tomography (CT) and PA imaging, and the imaging sensitivity is further enhanced by the fluorescent QDs. The mesoporous feature of silica allows the loading of a typical antitumor drug, doxorubicin (DOX), which are sealed by the polycationic gatekeepers, low toxic hydroxyl‐rich CD‐PGEA/pDNA complexes, realizing the co‐delivery of drug and gene. The photothermal effect of Au NRs is utilized for photothermal therapy (PTT). More interestingly, such photothermal effect also induces a cascade of NIR‐triggered release of DOX through the facilitated detachment of CD‐PGEA gatekeepers for controlled chemotherapy. The resultant chemotherapy and gene therapy for glioma tumors are complementary for the efficiency of PTT. This work presents a novel responsive multifunctional imaging‐guided therapy platform, which combines fluorescent/PA/CT imaging and gene/chemo/photothermal therapy into one nanostructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号