首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Size‐dependent nonlinear optical properties of modification‐free transition metal dichalcogenide (TMD) nanosheets are reported, including MoS2, WS2, and NbSe2. Firstly, a gradient centrifugation method is demonstrated to separate the TMD nanosheets into different sizes. The successful size separation allows the study of size‐dependent nonlinear optical properties of nanoscale TMD materials for the first time. Z‐scan measurements indicate that the dispersion of MoS2 and WS2 nanosheets that are 50–60 nm thick leads to reverse saturable absorption (RSA), which is in contrast to the saturable absorption (SA) seen in the thicker samples. Moreover, the NbSe2 nanosheets show no size‐dependent effects because of their metallic nature. The mechanism behind the size‐dependent nonlinear optical properties of the semiconductive TMD nanosheets is revealed by transient transmission spectra measurements.  相似文献   

2.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

3.
Tungsten ditelluride (WTe2) is a semimetal with orthorhombic Td phase that possesses some unique properties such as Weyl semimetal states, pressure‐induced superconductivity, and giant magnetoresistance. Here, the high‐pressure properties of WTe2 single crystals are investigated by Raman microspectroscopy and ab initio calculations. WTe2 shows strong plane‐parallel/plane‐vertical vibrational anisotropy, stemming from its intrinsic Raman tensor. Under pressure, the Raman peaks at ≈120 cm?1 exhibit redshift, indicating structural instability of the orthorhombic Td phase. WTe2 undergoes a phase transition to a monoclinic T′ phase at 8 GPa, where the Weyl states vanish in the new T′ phase due to the presence of inversion symmetry. Such Td to T′ phase transition provides a feasible method to achieve Weyl state switching in a single material without doping. The new T′ phase also coincides with the appearance of superconductivity reported in the literature.  相似文献   

4.
The controlled synthesis of MoTe2 and WTe2 is crucial for their fundamental research and potential electronic applications. Here, a simplified ambient‐pressure chemical vapor deposition (CVD) strategy is developed to synthesize high‐quality and large‐scale monolayer and few‐layer 1T′‐phase MoTe2 (length ≈ 1 mm) and WTe2 (length ≈ 350 µm) crystals by using ordinary salts (KCl or NaCl) as the growth promoter combining with low‐cost (NH4)6Mo7O24·4H2O and hydrate (NH4)10W12O41·xH2O as the Mo and W sources, respectively. Atomic force microscopy, X‐ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy confirm the high‐quality nature and the atomic structure of the as‐grown 1T′ MoTe2 and WTe2 flakes. Variable‐temperature transport measurements exhibit their semimetal properties. Furthermore, near‐field nanooptical imaging studies are performed on the 1T′ MoTe2 and WTe2 flakes for the first time. The sub‐wavelength effects of 1T′‐phase MoTe2p ≈ 140 nm) and WTe2p ≈ 100 nm) are obtained. This approach paves the way for the growth of special transition‐metal dichalcogenides materials and boosts the future polaritonic research of 2D telluride compounds.  相似文献   

5.
Using the MoS2‐WTe2 heterostructure as a model system combined with electrochemical microreactors and density function theory calculations, it is shown that heterostructured contacts enhance the hydrogen evolution reaction (HER) activity of monolayer MoS2. Two possible mechanisms are suggested to explain this enhancement: efficient charge injection through large‐area heterojunctions between MoS2 and WTe2 and effective screening of mirror charges due to the semimetallic nature of WTe2. The dielectric screening effect is proven minor, probed by measuring the HER activity of monolayer MoS2 on various support substrates with dielectric constants ranging from 4 to 300. Thus, the enhanced HER is attributed to the increased charge injection into MoS2 through large‐area heterojunctions. Based on this understanding, a MoS2/WTe2 hybrid catalyst is fabricated with an HER overpotential of ?140 mV at 10 mA cm?2, a Tafel slope of 40 mV dec?1, and long stability. These results demonstrate the importance of interfacial design in transition metal dichalcogenide HER catalysts. The microreactor platform presents an unambiguous approach to probe interfacial effects in various electrocatalytic reactions.  相似文献   

6.
Atomically thin molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are very interesting two dimensional materials for optics and electronics. In this work we show the possibility to obtain one-dimensional photonic crystals consisting of low-cost and easy processable materials, as silicon dioxide (SiO2) or poly methyl methacrylate (PMMA), and of MoS2 or WS2 monolayers. We have simulated the transmission spectra of the photonic crystals using the transfer matrix method and employing the wavelength dependent refractive indexes of the materials. This study envisages the experimental fabrication of these new types of photonic crystals for photonic and light emission applications.  相似文献   

7.
A simple thermal annealing method for layer thinning and etching of mechanically exfoliated MoS2 nanosheets in air is reported. Using this method, single‐layer (1L) MoS2 nanosheets are achieved after the thinning of MoS2 nanosheets from double‐layer (2L) to quadri‐layer (4L) at 330 °C. The as‐prepared 1L MoS2 nanosheet shows comparable optical and electrical properties with the mechanically exfoliated, pristine one. In addition, for the first time, the MoS2 mesh with high‐density of triangular pits is also fabricated at 330 °C, which might arise from the anisotropic etching of the active MoS2 edge sites. As a result of thermal annealing in air, the thinning of MoS2 nanosheet is possible due to its oxidation to form MoO3. Importantly, the MoO3 fragments on the top of thinned MoS2 layer induces the hole injection, resulting in the p‐type channel in fabricated field‐effect transistors.  相似文献   

8.
Nonvolatile field‐effect transistor (FET) memories containing transition metal dichalcogenide (TMD) nanosheets have been recently developed with great interest by utilizing some of the intriguing photoelectronic properties of TMDs. The TMD nanosheets are, however, employed as semiconducting channels in most of the memories, and only a few works address their function as floating gates. Here, a floating‐gate organic‐FET memory with an all‐in‐one floating‐gate/tunneling layer of the solution‐processed TMD nanosheets is demonstrated. Molybdenum disulfide (MoS2) is efficiently liquid‐exfoliated by amine‐terminated polystyrene with a controlled amount of MoS2 nanosheets in an all‐in‐one floating‐gate/tunneling layer, allowing for systematic investigation of concentration‐dependent charge‐trapping and detrapping properties of MoS2 nanosheets. At an optimized condition, the nonvolatile memory exhibits memory performances with an ON/OFF ratio greater than 104, a program/erase endurance cycle over 400 times, and data retention longer than 7 × 103 s. All‐in‐one floating‐gate/tunneling layers containing molybdenum diselenide and tungsten disulfide are also developed. Furthermore, a mechanically‐flexible TMD memory on a plastic substrate shows a performance comparable with that on a hard substrate, and the memory properties are rarely altered after outer‐bending events over 500 times at the bending radius of 4.0 mm.  相似文献   

9.
Tin diselenide (SnSe2) nanosheets as novel 2D layered materials have excellent optical properties with many promising application prospects, such as photoelectric detectors, nonlinear optics, infrared photoelectric devices, and ultrafast photonics. Among them, ultrafast photonics has attracted much attention due to its enormous advantages; for instance, extremely fast pulse, strong peak power, and narrow bandwidth. In this work, SnSe2 nanosheets are fabricated by using solvothermal treatment, and the characteristics of SnSe2 are systemically investigated. In addition, the solution of SnSe2 nanosheets is successfully prepared as a fiber‐based saturable absorber by utilizing the evanescent field effect, which can bear a high pump power. 31st‐order subpicosecond harmonic mode locking is generated in an Er‐doped fiber laser, corresponding to the maximum repetition rate of 257.3 MHz and pulse duration of 887 fs. The results show that SnSe2 can be used as an excellent nonlinear photonic device in many fields, such as frequency comb, lasers, photodetectors, etc.  相似文献   

10.
The major challenges faced by candidate electrode materials in lithium‐ion batteries (LIBs) include their low electronic and ionic conductivities. 2D van der Waals materials with good electronic conductivity and weak interlayer interaction have been intensively studied in the electrochemical processes involving ion migrations. In particular, molybdenum ditelluride (MoTe2) has emerged as a new material for energy storage applications. Though 2H‐MoTe2 with hexagonal semiconducting phase is expected to facilitate more efficient ion insertion/deinsertion than the monoclinic semi‐metallic phase, its application as an anode in LIB has been elusive. Here, 2H‐MoTe2, prepared by a solid‐state synthesis route, has been employed as an efficient anode with remarkable Li+ storage capacity. The as‐prepared 2H‐MoTe2 electrodes exhibit an initial specific capacity of 432 mAh g?1 and retain a high reversible specific capacity of 291 mAh g?1 after 260 cycles at 1.0 A g?1. Further, a full‐cell prototype is demonstrated by using 2H‐MoTe2 anode with lithium cobalt oxide cathode, showing a high energy density of 454 Wh kg?1 (based on the MoTe2 mass) and capacity retention of 80% over 100 cycles. Synchrotron‐based in situ X‐ray absorption near‐edge structures have revealed the unique lithium reaction pathway and storage mechanism, which is supported by density functional theory based calculations.  相似文献   

11.
Precisely controllable and reversible p/n‐type electronic doping of molybdenum ditelluride (MoTe2) transistors is achieved by electrothermal doping (E‐doping) processes. E‐doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n‐type) doping and exposure to air, which induces hole (p‐type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe2 surface, and allows the accurate manipulation of p/n‐type electrical doping of MoTe2 transistors. Because no dopant or special gas is used in the E‐doping processes of MoTe2, E‐doping is a simple and efficient method. Moreover, through exact manipulation of p/n‐type doping of MoTe2 transistors, quasi‐complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E‐doping, adopted in obtaining p/n‐type doping of MoTe2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance.  相似文献   

12.
Atomically thin materials, such as graphene and transition metal dichalcogenides, are promising candidates for future applications in micro/nanodevices and systems. For most applications, functional nanostructures have to be patterned by lithography. Developing lithography techniques for 2D materials is essential for system integration and wafer-scale manufacturing. Here, a thermomechanical indentation technique is demonstrated, which allows for the direct cutting of 2D materials using a heated scanning nanotip. Arbitrarily shaped cuts with a resolution of 20 nm are obtained in monolayer 2D materials, i.e., molybdenum ditelluride (MoTe2), molybdenum disulfide (MoS2), and molybdenum diselenide (MoSe2), by thermomechanically cleaving the chemical bonds and by rapid sublimation of the polymer layer underneath the 2D material layer. Several micro/nanoribbon structures are fabricated and electrically characterized to demonstrate the process for device fabrication. The proposed direct nanocutting technique allows for precisely tailoring nanostructures of 2D materials with foreseen applications in the fabrication of electronic and photonic nanodevices.  相似文献   

13.
A novel phase transition, from multilayered 2H‐MoTe2 to a parallel bundle of sub‐nanometer‐diameter metallic Mo6Te6 nanowires (NWs) driven by catalyzer‐free thermal‐activation (400–500 °C) under vacuum, is demonstrated. The NWs form along the 〈11–20〉 2H‐MoTe2 crystallographic directions with lengths in the micrometer range. The metallic NWs can act as an efficient hole injection layer on top of 2H‐MoTe2 due to favorable band‐alignment. In particular, an atomically sharp MoTe2/Mo6Te6 interface and van der Waals gap with the 2H layers are preserved. The work highlights an alternative pathway for forming a new transition metal dichalcogenide phase and will enable future exploration of its intrinsic transportation properties.  相似文献   

14.
The 2H phase and 1T phase coexisting in the same molybdenum disulfide (MoS2) nanosheets can influence the electronic properties of the materials. The 1T phase of MoS2 is introduced into the 2H‐MoS2 nanosheets by two‐step hydrothermal synthetic methods. Two types of nonvolatile memory effects, namely write‐once read‐many times memory and rewritable memory effect, are observed in the flexible memory devices with the configuration of Al/1T@2H‐MoS2‐polyvinylpyrrolidone (PVP)/indium tin oxide (ITO)/polyethylene terephthalate (PET) and Al/2H‐MoS2‐PVP/ITO/PET, respectively. It is observed that structural phase transition in MoS2 nanosheets plays an important role on the resistive switching behaviors of the MoS2‐based device. It is hoped that our results can offer a general route for the preparation of various promising nanocomposites based on 2D nanosheets of layered transition metal dichalcogenides for fabricating the high performance and flexible nonvolatile memory devices through regulating the phase structure in the 2D nanosheets.  相似文献   

15.
A systematic modulation of the carrier type in molybdenum ditelluride (MoTe2) field‐effect transistors (FETs) is described, through rapid thermal annealing (RTA) under a controlled O2 environment (p‐type modulation) and benzyl viologen (BV) doping (n‐type modulation). Al2O3 capping is then introduced to improve the carrier mobilities and device stability. MoTe2 is found to be ultrasensitive to O2 at elevated temperatures (250 °C). Charge carriers of MoTe2 flakes annealed via RTA at various vacuum levels are tuned between predominantly pristine n‐type ambipolar, symmetric ambipolar, unipolar p‐type, and degenerate‐like p‐type. Changes in the MoTe2‐transistor performance are confirmed to originate from the physical and chemical absorption and dissociation of O2, especially at tellurium vacancy sites. The electron branch is modulated by varying the BV dopant concentrations and annealing conditions. Unipolar n‐type MoTe2 FETs with a high on–off ratio exceeding 106 are achieved under optimized doping conditions. By introducing Al2O3 capping, carrier field effect mobilities (41 for holes and 80 cm2 V?1 s?1 for electrons) and device stability are improved due to the reduced trap densities and isolation from ambient air. Lateral MoTe2 p–n diodes with an ideality factor of 1.2 are fabricated using the p‐ and n‐type doping technique to test the superb potential of the doping method in functional electronic device applications.  相似文献   

16.
Recently, the development of multifunctional theranostic nanoplatforms to realize tumor‐specific imaging and enhanced cancer therapy via responding or modulating the tumor microenvironment (TME) has attracted tremendous interests in the field of nanomedicine. Herein, tungsten disulfide (WS2) nanoflakes with their surface adsorbed with iron oxide nanoparticles (IONPs) via self‐assembly are coated with silica and then subsequently with manganese dioxide (MnO2), on to which polyethylene glycol (PEG) is attached. The obtained WS2‐IO/S@MO‐PEG appears to be highly sensitive to pH, enabling tumor pH‐responsive magnetic resonance imaging with IONPs as the pH‐inert T2 contrast probe and MnO2 as the pH‐sensitive T1 contrast probe. Meanwhile, synergistic combination tumor therapy is realized with such WS2‐IO/S@MO‐PEG, by utilizing the strong near‐infrared light and X‐ray absorbance of WS2 for photothermal therapy (PTT) and enhanced cancer radiotherapy (RT), respectively, as well as the ability of MnO2 to decompose tumor endogenous H2O2 and relieve tumor hypoxia to further overcome hypoxia‐associated radiotherapy resistance. The combination of PTT and RT with WS2‐IO/S@MO‐PEG results in a remarkable synergistic effect to destruct tumors. This work highlights the promise of developing multifunction nanocomposites for TME‐specific imaging and TME modulation, aiming at precision cancer synergistic treatment.  相似文献   

17.
Van der Waals (vdW) epitaxy allows the fabrication of various heterostructures with dramatically released lattice matching conditions. This study demonstrates interface‐driven stacking boundaries in WS2 using epitaxially grown tungsten disulfide (WS2) on wrinkled graphene. Graphene wrinkles function as highly reactive nucleation sites on WS2 epilayers; however, they impede lateral growth and induce additional stress in the epilayer due to anisotropic friction. Moreover, partial dislocation‐driven in‐plane strain facilitates out‐of‐plane buckling with a height of 1 nm to release in‐plane strain. Remarkably, in‐plane strain relaxation at partial dislocations restores the bandgap to that of monolayer WS2 due to reduced interlayer interaction. These findings clarify significant substrate morphology effects even in vdW epitaxy and are potentially useful for various applications involving modifying optical and electronic properties by manipulating extended 1D defects via substrate morphology control.  相似文献   

18.
Semimetal 1T′ MoTe2 crystals have attracted tremendous attention owing to their anisotropic optical properties, Weyl semimetal, phase transition, and so on. However, the complex refractive indices (nik) of the anisotropic semimetal 1T′ MoTe2 still are not revealed yet, which is important to applications such as polarized wide spectrum detectors, polarized surface plasmonics, and nonlinear optics. Here, the linear dichroism of as‐grown trilayer 1T′ MoTe2 single crystals is investigated. Trilayer 1T′ MoTe2 shows obvious anisotropic optical absorption due to the intraband transition of dz2 orbits for Mo atoms and px orbits for Te atoms. The anisotropic complex refractive indices of few‐layer 1T′ MoTe2 are experimentally obtained for the first time by using the Pinier equation analysis. Based on the linear dichroism of 1T′ MoTe2, angle‐resolved polarized optical microscopy is developed to visualize the grain boundary and identify the crystal orientation of 1T′ MoTe2 crystals, which is also an excellent tool toward the investigation of the optical absorption properties in the visible range for anisotropic 2D transition metal chalcogenides. This work provides a universal and nondestructive method to identify the crystal orientation of anisotropic 2D materials, which opens up an opportunity to investigate the optical application of anisotropic semimetal 2D materials.  相似文献   

19.
Combining photothermal therapy (PTT) with clinical technology to kill cancer via overcoming the low tumor targeting and poor therapy efficiency has great potential in basic and clinical researches. A brand‐new MoS2 nanostructure is designed and fabricated, i.e., layered MoS2 hollow spheres (LMHSs) with strong absorption in near‐infrared region (NIR) and high photothermal conversion efficiency via a simple and fast chemical aerosol flow method. Owing to curving layered hollow spherical structure, the as‐prepared LMHSs exhibit unique electronic properties comparing with MoS2 nanosheets. In vitro and in vivo studies demonstrate their high photothermal ablation of cell and tumor elimination rate by single NIR light irradiation. Systematic acute toxicity study indicates that these LMHSs have negligible toxic effects to normal tissues and blood. Remarkably, minimally invasive interventional techniques are introduced to improve tumor targeting of PTT agents for the first time. To explore PTT efficiency on orthotopic transplantation tumors, New Zealand white rabbits with VX2 tumor in liver are used as animal models. The effective elimination of tumors is successfully realized by PTT under the guidance of digital subtraction angiography, computed tomography, and thermal imaging, which provides a new way for tumor‐targeting delivery and cancer theranostic application.  相似文献   

20.
c2D transition metal dichalcogenides (TMDCs)‐based heterostructures have been demonstrated to achieve superior light absorption and photovoltaic effects theoretically and experimentally, making them extremely attractive for realizing optoelectronic devices. In this work, a vertical multilayered n‐MoS2/n‐silicon homotype heterojunction is fabricated, which takes advantage of multilayered MoS2 grown in situ directly on plane silicon. Electrical characterization reveals that the resultant device exhibits high sensitivity to visible–near‐infrared light with responsivity up to 11.9 A W–1. Notably, the photodetector shows high‐speed response time of ≈30.5 µs/71.6 µs and capability to work under higher pulsed light irradiation approaching 100 kHz. The high response speed could be attributed to a good quality of the multilayer MoS2, as well as in situ device fabrication process. These findings suggest that the multilayered MoS2/Si homotype heterojunction have great potential application in the field of visible–near‐infrared detection and might be used as elements for construction of high‐speed integrated optoelectronic sensor circuitry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号