首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The one‐step synthesis of porous carbon nanoflakes possessing a 3D texture is achieved by cooking (carbonization) a mixture containing two condiments, sodium glutamate (SG) and sodium chloride, which are commonly used in kitchens. The prepared 3D porous carbons are composed of interconnected carbon nanoflakes and possess instinct heteroatom doping such as nitrogen and oxygen, which furnishes the electrochemical activity. The combination of micropores and mesopores with 3D configurations facilitates persistent and fast ion transport and shorten diffusion pathways for high‐performance supercapacitor applications. Sodium glutamate carbonized at 800 °C exhibits high charge storage capacity with a specific capacitance of 320 F g?1 in 6 m KOH at a current density of 1 A g?1 and good stability over 10 000 cycles.  相似文献   

2.
《Advanced Powder Technology》2019,30(12):2900-2907
High electrochemical performance pomegranate-like porous carbon was synthesized by the carbonization and activation of phenolic resin which was prepared by adding phenolic resin monomer mixture into KOH aqueous solution and hydrothermal treatment. In the process of hydrothermal, KOH solution could hinder the polymerization of phenolic resin monomer to form big phenolic resin particles. During the carbonization, phenolic resin plays the role of forming small particles and binder during carbonization, which can simultaneously achieve high specific surface area and form three dimensional structures to improve the conductivity. The results showed that pomegranate-like porous carbon composed of small nanometer-scale particles was observed. The obtained porous carbon electrode materials had a high content of micropores with specific surface area as high as 2199.9 m2 g−1. The porous carbon exhibited a high specific capacitance of 341.3 F g−1 at 0.1 A g−1, good rate capability with 71.0% retention from 0.1 to 5 A g−1. Moreover, it showed high capacitance retention of 96.1% after 5000 cycles at a scan rate of 50 mV s−1, indicating excellent cycling stability. The assembled symmetrical supercapacitor showed high energy densities of 17.0 Wh kg−1 and 8.5 Wh kg−1 with the corresponding power densities of 49.6 W kg−1 and 1.8 kW kg−1, respectively. The facile method could be a promising candidate for preparing porous carbon electrode materials with excellent electrochemical performance in the fields of supercapacitors.  相似文献   

3.
The cost-effectively biomass-derived porous carbon is highly promising for usage in electrochemical energy storage as the electrode materials. Herein, a series of hierarchically porous carbons with biomass Chingma Abutilon Seeds as the renewable precursor were synthesized via KOH activation and high-temperature carbonization technique. The resulting carbon material possessed an interconnected structure, high specific surface area (120–3566 m2 g?1), hierarchical pores as well as the heteroatom-substituted functional groups. Based on the synergistic effect of the above-mentioned merits, the optimized material exhibited the remarkably electrochemical performance with high specific capacitance (389 F g?1 at 0.5 A g?1) and excellent rate stability (72% capacitance retention at 20 A g?1) in the three-electrode configuration. More significantly, the symmetric two-electrode device assembled in 6 M KOH delivered a high energy density of 39.2 Wh kg?1 and excellent chemical stability (90% capacitance retention after 10,000 cycles at 5 A g?1). Such prominent results might provide a new perspective on the value-added application of the renewable biomass resources in the electrochemical field.  相似文献   

4.
Nitrogen-doped porous carbon materials (NPCs) have been successfully fabricated by a simple one-step pyrolysis of diethylenetriaminepentaacetic acid (DTPA) in the presence of KOH. The as-synthesized NPCs displayed a high specific surface area (3214?m2?g?1) and a well-defined porous structure when the annealing temperature reached 800?°C, which showed superior electrochemical performance as supercapacitor electrode materials. Electrochemical tests showed that the NPCs achieved an impressive specific capacitance of 323?F?g?1 at a current density of 0.5?A?g?1 in 6?M KOH aqueous solution and an outstanding cycle stability, negligible specific capacitance decay after 5000 cycles at 10?A?g?1. This strategy offered a new insight into the preparation of novel carbon materials for the advanced energy storage devices, such as supercapacitors, fuel cells and lithium ion batteries.  相似文献   

5.

Hierarchical porous carbon materials with high surface area are facilely prepared by directly carbonizing carex meyeriana without any extra activation procedure. The as-prepared porous carbon samples possess high Brunauer–Emmett–Teller (BET) surface areas (in the?~?518–742 m2 g?1 range) and unique hierarchical porous structure containing macropore channels and mesopores and micropores developed in the wall of macropores. These intriguing characteristics make the as-prepared hierarchical porous carbon samples a promising electrode material for supercapacitors. The capacitive performance was measured in the three-electrode system with 6 M KOH electrolyte. The hierarchical porous carbon prepared at the carbonization temperature of 1000 °C presents a high specific capacitance of 178.6 F g?1 at a current density of 0.5 A g?1, a good rate performance ( about 65.2% retention ratio at the current density of 20 A g?1), and an excellent cycling stability (no obvious performance fading after 10,000 cycles). In addition, the fabricated two-electrode device achieves an energy density of 4.33 Wh kg?1 at a high power density of 5 kW kg?1. These results provide a green and facile method to synthesize the electrode material from biomass for high-performance supercapacitors.

  相似文献   

6.
Carbon materials have received considerable attention as host cathode materials for sulfur in lithium–sulfur batteries; N‐doped carbon materials show particularly high electrocatalytic activity. Efforts are made to synthesize N‐doped carbon materials by introducing nitrogen‐rich sources followed by sintering or hydrothermal processes. In the present work, an in situ hollow cathode discharge plasma treatment method is used to prepare 3D porous frameworks based on N‐doped graphene as a potential conductive matrix material. The resulting N‐doped graphene is used to prepare a 3D porous framework with a S content of 90 wt% as a cathode in lithium–sulfur cells, which delivers a specific discharge capacity of 1186 mAh g?1 at 0.1 C, a coulombic efficiency of 96% after 200 cycles, and a capacity retention of 578 mAh g?1 at 1.0 C after 1000 cycles. The performance is attributed to the flexible 3D structure and clustering of pyridinic N‐dopants in graphene. The N‐doped graphene shows high electrochemical performance and the flexible 3D porous stable structure accommodates the considerable volume change of the active material during lithium insertion and extraction processes, improving the long‐term electrochemical performance.  相似文献   

7.
2D carbon nanomaterials such as graphene and its derivatives, have gained tremendous research interests in energy storage because of their high capacitance and chemical stability. However, scalable synthesis of ultrathin carbon nanosheets with well‐defined pore architectures remains a great challenge. Herein, the first synthesis of 2D hierarchical porous carbon nanosheets (2D‐HPCs) with rich nitrogen dopants is reported, which is prepared with high scalability through a rapid polymerization of a nitrogen‐containing thermoset and a subsequent one‐step pyrolysis and activation into 2D porous nanosheets. 2D‐HPCs, which are typically 1.5 nm thick and 1–3 µm wide, show a high surface area (2406 m2 g?1) and with hierarchical micro‐, meso‐, and macropores. This 2D and hierarchical porous structure leads to robust flexibility and good energy‐storage capability, being 139 Wh kg?1 for a symmetric supercapacitor. Flexible supercapacitor devices fabricated by these 2D‐HPCs also present an ultrahigh volumetric energy density of 8.4 mWh cm?3 at a power density of 24.9 mW cm?3, which is retained at 80% even when the power density is increased by 20‐fold. The devices show very high electrochemical life (96% retention after 10000 charge/discharge cycles) and excellent mechanical flexibility.  相似文献   

8.
Graphene electrode–based supercapacitors are in high demand due to their superior electrochemical characteristics. A major bottleneck of using the supercapacitors for commercial applications lies in their inferior electrode cycle life. Herein, a simple and facile method to fabricate highly efficient supercapacitor electrodes using pristine graphene sheets vertically stacked and electrically connected to the carbon fibers which can result in vertically aligned graphene–carbon fiber nanostructure is developed. The vertically aligned graphene–carbon fiber electrode prepared by electrophoretic deposition possesses a mesoporous 3D architecture which enabled faster and efficient electrolyte‐ion diffusion with a gravimetric capacitance of 333.3 F g?1 and an areal capacitance of 166 mF cm?2. The electrodes displayed superlong electrochemical cycling stability of more than 100 000 cycles with 100% capacitance retention hence promising for long‐lasting supercapacitors. Apart from the electrochemical double layer charge storage, the oxygen‐containing surface moieties and α‐Ni(OH)2 present on the graphene sheets enhance the charge storage by faradaic reactions. This enables the assembled device to provide an excellent gravimetric energy density of 76 W h kg?1 with a 100% capacitance retention even after 1000 bending cycles. This study opens the door for developing high‐performing flexible graphene electrodes for wearable energy storage applications.  相似文献   

9.
A mild and environmental‐friendly method is developed for fabricating a 3D interconnected graphene electrode with large‐scale continuity. Such material has interlayer pores between reduced graphene oxide nanosheets and in‐plane pores. Hence, a specific surface area up to 835 m2 g−1 and a high powder conductivity up to 400 S m−1 are achieved. For electrochemical applications, the interlayer pores can serve as “ion‐buffering reservoirs” while in‐plane ones act as “channels” for shortening the mass cross‐plane diffusion length, reducing the ion response time, and prevent the interlayer restacking. As binder‐free supercapacitor electrode, it delivers a specific capacitance up to 169 F g−1 with surface‐normalized capacitance close to 21 μF cm−2 (intrinsic capacitance) and power density up to 7.5 kW kg−1, in 6 m KOH aqueous electrolyte. In the case of lithium‐ion battery anode, it shows remarkable advantages in terms of the initiate reversible Coulombic efficiency (61.3%), high specific capacity (932 mAh g−1 at 100 mA g−1), and robust long‐term retention (93.5% after 600 cycles at 2000 mAh g−1).  相似文献   

10.
An alternative routine is presented by constructing a novel architecture, conductive metal/transition oxide (Co@Co3O4) core–shell three‐dimensional nano‐network (3DN) by surface oxidating Co 3DN in situ, for high‐performance electrochemical capacitors. It is found that the Co@Co3O4 core–shell 3DN consists of petal‐like nanosheets with thickness of <10 nm interconnected forming a 3D porous nanostructure, which preserves the original morphology of Co 3DN well. X‐ray photoelectron spectroscopy by polishing the specimen layer by layer reveals that the Co@Co3O4 nano‐network is core–shell‐like structure. In the application of electrochemical capacitors, the electrodes exhibit a high specific capacitance of 1049 F g?1 at scan rate of 2 mV/s with capacitance retention of ~52.05% (546 F g?1 at scan rate of 100 mV) and relative high areal mass density of 850 F g?1 at areal mass of 3.52 mg/cm2. It is believed that the good electrochemical behaviors mainly originate from its extremely high specific surface area and underneath core‐Co “conductive network”. The high specific surface area enables more electroactive sites for efficient Faradaic redox reactions and thus enhances ion and electron diffusion. The underneath core‐Co “conductive network” enables an ultrafast electron transport.  相似文献   

11.
Graphene‐oxide (GO) based porous structures are highly desirable for supercapacitors, as the charge storage and transfer can be enhanced by advancement in the synthesis. An effective route is presented of, first, synthesis of three‐dimensional (3D) assembly of GO sheets in a spherical architecture (GOS) by flash‐freezing of GO dispersion, and then development of hierarchical porous graphene (HPG) networks by facile thermal‐shock reduction of GOS. This leads to a superior gravimetric specific capacitance of ≈306 F g−1 at 1.0 A g−1, with a capacitance retention of 93% after 10 000 cycles. The values represent a significant capacitance enhancement by 30–50% compared with the GO powder equivalent, and are among the highest reported for GO‐based structures from different chemical reduction routes. Furthermore, a solid‐state flexible supercapacitor is fabricated by constructing the HPG with polymer gel electrolyte, exhibiting an excellent areal specific capacitance of ≈220 mF cm−2 at 1.0 mA cm−2 with exceptional cyclic stability. The work reveals a facile but efficient synthesis approach of GO‐based materials to enhance the capacitive energy storage.  相似文献   

12.
以海藻作为固相碳源,利用海藻对金属离子具有吸附性能的特点,在未进行生物质材料改性的条件下,实现海藻生物质材料对催化剂金属离子的均匀吸附.本文结合原位高温金属催化和化学活化的方法制备三维多孔石墨烯,并研究了其作为超级电容器电极材料的电化学性能.通过扫描电镜、透射电镜、X射线衍射、拉曼光谱、氮气吸附等手段对三维多孔石墨烯的形貌与结构进行表征分析.研究结果表明,制备的三维多孔石墨烯具有片层状三维网络结构,且片层较薄,并具有较高的石墨化程度,其比表面积达到1 700 m~2/g,孔径分布主要在2~10 nm.以该三维多孔石墨烯材料作为超级电容器电极材料,进行电化学性能表征,发现在较低的电压扫速下得到的比电容量为90 F/g,同时,该材料还具有较高的能量密度和功率密度.以海藻为固相碳源制备得到的三维多孔石墨烯材料在超级电容器领域具有一定的应用前景.  相似文献   

13.
A porous, yet compact, RuO2/graphene hybrid is successfully prepared by using a disassembly–reassembly strategy, achieving effective and uniform loading of RuO2 nanoparticles inside compact graphene monolith. The disassembly process ensures the uniform loading of RuO2 nanoparticles into graphene monolith, while the reassembly process guarantees a high density yet simultaneously unimpeded ion transport channel in the composite. The resulting RuO2/graphene hybrid possesses a density of 2.63 g cm−3, leading to a record high volumetric capacitance of 1485 F cm−3 at the current density of 0.1 A g−1. When the current density is increased to 20 A g−1, it remains a high volumetric capacitance of 1188 F cm−3. More importantly, when the single electrode mass loading is increased to 12 mg cm−2, it still delivers a high volumetric capacitance of 1415 F cm−3 at the current density of 0.1 A g−1, demonstrating the promise of this disassembly–reassembly approach to create high volumetric performance materials for energy storage applications.  相似文献   

14.
An N‐superdoped 3D graphene network structure with an N‐doping level up to 15.8 at% for high‐performance supercapacitor is designed and synthesized, in which the graphene foam with high conductivity acts as skeleton and nested with N‐superdoped reduced graphene oxide arogels. This material shows a highly conductive interconnected 3D porous structure (3.33 S cm?1), large surface area (583 m2 g?1), low internal resistance (0.4 Ω), good wettability, and a great number of active sites. Because of the multiple synergistic effects of these features, the supercapacitors based on this material show a remarkably excellent electrochemical behavior with a high specific capacitance (of up to 380, 332, and 245 F g?1 in alkaline, acidic, and neutral electrolytes measured in three‐electrode configuration, respectively, 297 F g?1 in alkaline electrolytes measured in two‐electrode configuration), good rate capability, excellent cycling stability (93.5% retention after 4600 cycles), and low internal resistance (0.4 Ω), resulting in high power density with proper high energy density.  相似文献   

15.
Nitrogen-doped graphene/Co–Ni layered double hydroxide (RGN/Co–Ni LDH) is synthesized by a facile co-precipitation method. Transmission electron microscopy images indicated that the formation of Co–Ni(OH)2 nanoflakes with the good dispersion anchored on the surfaces of the nitrogen-doped graphene sheets. The nitrogen-doped graphene composites delivered the enhanced electrochemical performances compared to the pure Co–Ni LDH due to the improved electronic conductivity and its hierarchical layer structures. The high specific capacitance of 2092 F g?1 at current density of 5 mA cm?2 and the rate retention of 86.5% at current density of 5–50 mA cm?2 are achieved by RGN/Co–Ni LDH, higher than that of pure Co–Ni LDH (1479 F g?1 and 76.5%). Moreover, the two-electrode asymmetric supercapacitor, with the RGN/Co–Ni LDH composites as the positive electrode and active carbon as the negative electrode material, exhibits energy density of 49.4 Wh kg?1 and power density of 101.97 W kg?1 at the current density of 5 mA cm?2, indicating the composite has better capacitive behavior.  相似文献   

16.
To date, graphene‐based electric double layer supercapacitors have not shown the remarkable specific capacitance as theoretically predicted. An efficient strategy toward boosting the overall capacitance is to endow graphene with pseudocapacitance. Herein, molecules of hydrolyzed polyimide (HPI) are used to functionalize N‐doped graphene (NG) via π–π interaction and the resulting enhanced electrochemical energy storage is reported. These aromatic molecules in monolayer form on graphene contribute strong pseudocapacitance. Paper‐like NG films with different areal mass loadings ranging from 0.5 to 4.8 mg cm?2 are prepared for supercapacitor electrodes. It is shown that the gravimetric capacitance can be increased by 50–60% after the surface functionalization by HPI molecules. A high specific capacitance of 553 F g?1 at 5 mV s?1 is achieved by the HPI‐NG film with a graphene mass loading of 0.5 mg cm?2 in H2SO4 aqueous electrolyte. For the HPI‐NG film with highest mass loading, the gravimetric specific capacitance drops to 340 F g?1 while the areal specific capacitance reaches a high value of 1.7 F cm?2. HPI‐NG films are also tested in Li2SO4 aqueous electrolyte, over an extended voltage window of 1.6 V. High specific energy densities up to 40 Wh kg?1 are achieved with the Li2SO4 electrolyte.  相似文献   

17.
Nanostructured carbon materials play essential roles in electrochemical energy storage devices. However, scalable production of high surface area carbon with a cost‐effective process while controlling the morphology is challenging. Herein, a one‐step procedure to produce carbon sheets with very high specific surface area up to 3411 m2 g?1 by direct pyrolysis of dipotassium ethylene diamine tetraacetate is reported. Unlike that of biomass‐pyrolyzed carbons, the surface area of prepared carbon sheets is not sensitive to pyrolysis conditions (e.g., heating temperature and time), which makes the production robust and scalable. Moreover, the pore structure is stable against posttreatments, including solvent washing, which are detrimental to that of graphene‐based soft sheet assemblies. When used as supercapacitor electrodes, the ultrahigh surface area carbon sheets (HSACS) show a high specific capacitance of 268 F g?1 at 5 mV s?1, and retain 70% of the capacitance at 100 times higher scan rate in 6 m KOH aqueous electrolyte. Furthermore, the HSACS also exhibit a high specific capacitance of 266 F g?1 within a 1.6 V symmetric supercapacitor potential window in 2 m Li2SO4 aqueous electrolyte. The symmetric supercapacitor delivers a maximum specific energy of 23.6 W h kg?1 and high power density of 6.4 kW kg?1.  相似文献   

18.
The primary challenge with lithium–sulfur battery research is the design of sulfur cathodes that exhibit high electrochemical efficiency and stability while keeping the sulfur content and loading high and the electrolyte/sulfur ratio low. With a systematic investigation, a novel graphene/cotton‐carbon cathode is presented here that enables sulfur loading and content as high as 46 mg cm?2 and 70 wt% with an electrolyte/sulfur ratio of as low as only 5. The graphene/cotton‐carbon cathodes deliver peak capacities of 926 and 765 mA h g?1, respectively, at C/10 and C/5 rates, which translate into high areal, gravimetric, and volumetric capacities of, respectively, 43 and 35 mA h cm?2, 648 and 536 mA h g?1, and 1067 and 881 mA h cm?3 with a stable cyclability. They also exhibit superior cell‐storage capability with 95% capacity‐retention, a low self‐discharge constant of just 0.0012 per day, and stable poststorage cyclability after storing over a long period of six months. This work demonstrates a viable approach to develop lithium–sulfur batteries with practical energy densities exceeding that of lithium‐ion batteries.  相似文献   

19.
A facile method to convert biomolecule‐based carbon nanodots (CNDs) into high‐surface‐area 3D‐graphene networks with excellent electrochemical properties is presented. Initially, CNDs are synthesized by microwave‐assisted thermolysis of citric acid and urea according to previously published protocols. Next, the CNDs are annealed up to 400 °C in a tube furnace in an oxygen‐free environment. Finally, films of the thermolyzed CNDs are converted into open porous 3D turbostratic graphene (3D‐ts‐graphene) networks by irradiation with an infrared laser. Based upon characterizations using scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, Fourier‐transform infrared spectroscopy, and Raman spectroscopy, a feasible reaction mechanism for both the thermolysis of the CNDs and the subsequent laser conversion into 3D‐ts‐graphene is presented. The 3D‐ts‐graphene networks show excellent morphological properties, such as a hierarchical porous structure and a high surface area, as well as promising electrochemical properties. For example, nearly ideal capacitive behavior with a volumetric capacitance of 27.5 mF L ? 1 is achieved at a current density of 560 A L ? 1, which corresponds to an energy density of 24.1 mWh L ? 1 at a power density of 711 W L ? 1. Remarkable is the extremely fast charge–discharge cycling rate with a time constant of 3.44 ms.  相似文献   

20.
Nitrogen‐doped graphene (NG) with wrinkled and bubble‐like texture is fabricated by a thermal treatment. Especially, a novel sonication‐assisted pretreatment with nitric acid is used to further oxidize graphene oxide and its binding with melamine molecules. There are many bubble‐like nanoflakes with a dimension of about 10 nm appeared on the undulated graphene nanosheets. The bubble‐like texture provides more active sites for effective ion transport and reversible capacitive behavior. The specific surface area of NG (5.03 at% N) can reach up to 438.7 m2 g?1, and the NG electrode demonstrates high specific capacitance (481 F g?1 at 1 A g?1, four times higher than reduced graphene oxide electrode (127.5 F g?1)), superior cycle stability (the capacitance retention of 98.9% in 2 m KOH and 99.2% in 1 m H2SO4 after 8000 cycles), and excellent energy density (42.8 Wh kg?1 at power density of 500 W kg?1 in 2 m KOH aqueous electrolyte). The results indicate the potential use of NG as graphene‐based electrode material for energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号