共查询到20条相似文献,搜索用时 12 毫秒
1.
Chaohai Wang Jeonghun Kim Victor Malgras Jongbeom Na Jianjian Lin Jungmok You Ming Zhang Jiansheng Li Yusuke Yamauchi 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(16)
With the ever‐growing environmental issues, sulfate radical (SO4??)‐based advanced oxidation processes (SR‐AOPs) have been attracting widespread attention due to their high selectivity and oxidative potential in water purification. Among various methods generating SO4??, employing heterogeneous catalysts for activation of peroxymonosulfate or persulfate has been demonstrated as an effective strategy. Therefore, the future advances of SR‐AOPs depend on the development of adequate catalysts with high activity and stability. Metal–organic frameworks (MOFs) with large surface area, ultrahigh porosity, and diversity of material design have been extensively used in heterogeneous catalysts, and more recently, enormous effort has been made to utilize MOFs‐based materials for SR‐AOPs applications. In this work, the state‐of‐the‐art research on pristine MOFs, MOFs composites, and their derivatives, such as oxides, metal/carbon hybrids, and carbon materials for SR‐AOPs, is summarized. The mechanisms, including radical and nonradical pathways, are also detailed in the discussion. This work will hopefully promote the future development of MOFs‐based materials toward SR‐AOPs applications. 相似文献
2.
Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world‐wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF‐involved solar‐to‐chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co‐catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated. 相似文献
3.
4.
Metal–organic frameworks (MOFs) are constructed by periodically alternate metal ions with organic ligands, which offer structural diversity and a wide range of interesting properties as an attractive classification of crystalline porous materials. Integration of MOFs with other size‐limited functional centers can supply new multifunctional composites, which exhibit both the properties of the components and new characteristics due to the combination of MOFs with the selected loadings. In recent years, integration of metal/metal oxide nanoparticles (MNPs) into MOFs to form the composite catalysts has attracted considerable attention due to the superior performance. In this review, the latest studies and up‐to‐date developments on the design and synthetic strategy of new MNP@MOF composite catalysts are specifically highlighted. Both the achievements and problems are evaluated and proposed, and the opportunities and challenges of MNP@MOF composite catalysts are discussed. 相似文献
5.
Muhammad Usman Shruti Mendiratta Kuang‐Lieh Lu 《Advanced materials (Deerfield Beach, Fla.)》2017,29(6)
Metal–organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. 相似文献
6.
Kolleboyina Jayaramulu Florian Geyer Andreas Schneemann tpn Kment Michal Otyepka Radek Zboril Doris Vollmer Roland A. Fischer 《Advanced materials (Deerfield Beach, Fla.)》2019,31(32)
Metal–organic frameworks (MOFs) have diverse potential applications in catalysis, gas storage, separation, and drug delivery because of their nanoscale periodicity, permanent porosity, channel functionalization, and structural diversity. Despite these promising properties, the inherent structural features of even some of the best‐performing MOFs make them moisture‐sensitive and unstable in aqueous media, limiting their practical usefulness. This problem could be overcome by developing stable hydrophobic MOFs whose chemical composition is tuned to ensure that their metal–ligand bonds persist even in the presence of moisture and water. However, the design and fabrication of such hydrophobic MOFs pose a significant challenge. Reported syntheses of hydrophobic MOFs are critically summarized, highlighting issues relating to their design, characterization, and practical use. First, wetting of hydrophobic materials is introduced and the four main strategies for synthesizing hydrophobic MOFs are discussed. Afterward, critical challenges in quantifying the wettability of these hydrophobic porous surfaces and solutions to these challenges are discussed. Finally, the reported uses of hydrophobic MOFs in practical applications such as hydrocarbon storage/separation and their use in separating oil spills from water are summarized. Finally, the state of the art is summarized and promising future developments of hydrophobic MOFs are highlighted. 相似文献
7.
8.
9.
10.
11.
Xiang Gao Xiaokun Pei David W. Gardner Christian S. Diercks Seungkyu Lee Bunyarat Rungtaweevoranit Mathieu S. Prevot Chenhui Zhu Sirine Fakra Roya Maboudian 《Advanced materials (Deerfield Beach, Fla.)》2019,31(12)
Nanocasting based on porous templates is a powerful strategy in accessing materials and structures that are difficult to form by bottom‐up syntheses in a controlled fashion. A facile synthetic strategy for casting ordered, nanoporous platinum (NP‐Pt) networks with a high degree of control by using metal–organic frameworks (MOFs) as templates is reported here. The Pt precursor is first infiltrated into zirconium‐based MOFs and subsequently transformed to 3D metallic networks via a chemical reduction process. It is demonstrated that the dimensions and topologies of the cast NP‐Pt networks can be accurately controlled by using different MOFs as templates. The Brunauer–Emmett–Teller surface areas of the NP‐Pt networks are estimated to be >100 m2 g?1 and they exhibit excellent catalytic activities in the methanol electrooxidation reaction (MEOR). This new methodology presents an attractive route to prepare well‐defined nanoporous materials for diverse applications ranging from energy to sensing and biotechnology. 相似文献
12.
Ming Liu Lingjun Kong Xuemin Wang Jie He Xian‐He Bu 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(45)
Benefiting from metal–organic frameworks (MOFs) unique structural characteristics, their versatility in composition and structure has been well explored in electrochemical oxygen evolution reaction (OER) processes. Here, a ligand/ionic exchange phenomenon of MOFs is reported in alkaline solution due to their poor stability, and the active species and reaction mechanism of MOFs are revealed in the OER process. A series of mixed Ni‐MOFs and Fe‐MOFs are synthesized by straightforward sonication and then directly used as catalyst candidates for OER in alkaline electrolyte. It can be confirmed via ex situ transmission electron microscopic images and X‐ray diffraction patterns analysis, that the bimetallic hydroxide (NiFe‐LDH) is generated in 1.0 m KOH in situ and acts as protagonist for oxygen evolution. The optimized catalyst (FN‐2) exhibits a lower overpotential (275 mV at a current density of 10 mA cm?2) and excellent long‐term stability (strong current density for 100 h without fading). The revelation of the real active species of MOF materials may contribute to better understanding of the reaction mechanism. 相似文献
13.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion. 相似文献
14.
Amarajothi Dhakshinamoorthy Abdullah M. Asiri Hermenegildo Garcia 《Advanced materials (Deerfield Beach, Fla.)》2019,31(41)
Metal–organic frameworks (MOFs) are composed of particles with 3D geometry and are currently among the most widely studied heterogeneous catalysts. To further increase their activity, one of the recent trends is to develop related 2D materials with a high aspect ratio derived from a large lateral size and a small thickness. Here, the use of these 2D MOFs as catalysts, electrocatalysts, and photocatalysts is summarized, illustrating the advantages of these 2D materials compared to analogous 3D MOFs. The state of the art is summarized in tables and, when possible, pertinent turnover number (TON) and frequency (TOF) values. This enhanced activity of 2D MOFs derives from the accessibility of the active sites, the presence of a higher density of defects, and exchangeable coordination positions around the MOFs, as well as from their ability to form thin films on electrodes or surfaces. The importance of providing convincing evidence of the stability of 2D MOFs under reaction conditions and general characterization data of the used 2D material after catalysis is highlighted. In the last part, views regarding challenges in the field and new developments that can be expected are presented. 相似文献
15.
Jia Zhuang Allison P. Young Chia‐Kuang Tsung 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(32)
Owing to the progressive development of metal–organic‐frameworks (MOFs) synthetic processes and considerable potential applications in last decade, integrating biomolecules into MOFs has recently gain considerable attention. Biomolecules, including lipids, oligopeptides, nucleic acids, and proteins have been readily incorporated into MOF systems via versatile formulation methods. The formed biomolecule‐MOF hybrid structures have shown promising prospects in various fields, such as antitumor treatment, gene delivery, biomolecular sensing, and nanomotor device. By optimizing biomolecule integration methods while overcoming existing challenges, biomolecule‐integrated MOF platforms are very promising to generate more practical applications. 相似文献
16.
17.
Mesoporous Metal–Organic Frameworks with Size‐, Shape‐, and Space‐Distribution‐Controlled Pore Structure 下载免费PDF全文
Weina Zhang Yayuan Liu Guang Lu Yong Wang Shaozhou Li Chenlong Cui Jin Wu Zhiling Xu Danbi Tian Wei Huang Joseph S. DuCheneu W. David Wei Hongyu Chen Yanhui Yang Fengwei Huo 《Advanced materials (Deerfield Beach, Fla.)》2015,27(18):2923-2929
18.
Jie Liang Zibin Liang Ruqiang Zou Yanli Zhao 《Advanced materials (Deerfield Beach, Fla.)》2017,29(30)
Crystalline porous materials are important in the development of catalytic systems with high scientific and industrial impact. Zeolites, ordered mesoporous silica, and metal–organic frameworks (MOFs) are three types of porous materials that can be used as heterogeneous catalysts. This review focuses on a comparison of the catalytic activities of zeolites, mesoporous silica, and MOFs. In the first part of the review, the distinctive properties of these porous materials relevant to catalysis are discussed, and the corresponding catalytic reactions are highlighted. In the second part, the catalytic behaviors of zeolites, mesoporous silica, and MOFs in four types of general organic reactions (acid, base, oxidation, and hydrogenation) are compared. The advantages and disadvantages of each porous material for catalytic reactions are summarized. Conclusions and prospects for future development of these porous materials in this field are provided in the last section. This review aims to highlight recent research advancements in zeolites, ordered mesoporous silica, and MOFs for heterogeneous catalysis, and inspire further studies in this rapidly developing field. 相似文献
19.
20.
Kaipeng Cheng Frantisek Svec Yongqin Lv Tianwei Tan 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(44)
Encapsulation of enzymes in metal–organic frameworks (MOFs) is often obstructed by the small size of the orifices typical of most reported MOFs, which prevent the passage of larger‐size enzymes. Here, the preparation of hierarchical micro‐ and mesoporous Zn‐based MOFs via the templated emulsification method using hydrogels as a template is presented. Zinc‐based hydrogels featuring a 3D interconnecting network are first produced via the formation of hydrogen bonds between melamine and salicylic acid in which zinc ions are well distributed. Further coordination with organic linkers followed by the removal of the hydrogel template produces hierarchical Zn‐based MOFs containing both micropores and mesopores. These new MOFs are used for the encapsulation of glucose oxidase and horseradish peroxidase to prove the concept. The immobilized enzymes exhibit a remarkably enhanced increased operational stability and enzymatic activity with a kcat/km value of 85.68 mm s–1. This value is 7.7‐fold higher compared to that found for the free enzymes in solution, and 2.7‐fold higher than enzymes adsorbed on conventional microporous MOFs. The much higher catalytic activity of the mesoporous conjugate for Knoevenagel reactions is demonstrated, since the large pores enable easier access to the active sites, and compared with that observed for catalysis using microporous MOFs. 相似文献