共查询到20条相似文献,搜索用时 0 毫秒
1.
Chun-Fei Hsu 《Applied Soft Computing》2013,13(5):2569-2576
This paper presents an adaptive PI Hermite neural control (APIHNC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The proposed APIHNC system is composed of a neural controller and a robust compensator. The neural controller uses a three-layer Hermite neural network (HNN) to online mimic an ideal controller and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Moreover, a proportional–integral learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed APIHNC system is applied to an inverted double pendulums and a two-link robotic manipulator. Simulation results verify that the proposed APIHNC system can achieve high-precision tracking performance. It should be emphasized that the proposed APIHNC system is clearly and easily used for real-time applications. 相似文献
2.
Shengfeng Zhou Mou Chen Chong-Jin Ong Peter C. Y. Chen 《Neural computing & applications》2016,27(5):1317-1325
In this paper, an adaptive neural network (NN) tracking controller is developed for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with input saturation. Radial basis function neural networks are utilized to approximate the unknown nonlinear functions in the MIMO system. A novel auxiliary system is developed to compensate the effects induced by input saturation (in both magnitude and rate) during tracking control. Endowed with a switching structure that integrates two existing representative auxiliary system designs, this novel auxiliary system improves control performance by preserving their advantages. It provides a comprehensive design structure in which parameters can be adjusted to meet the required control performance. The auxiliary system signal is utilized in both the control law and the neural network weight-update laws. The performance of the resultant closed-loop system is analyzed, and the bound of the transient error is established. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive neural network control. 相似文献
3.
Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints 总被引:10,自引:0,他引:10
In this paper, adaptive tracking control is proposed for a class of uncertain multi-input and multi-output nonlinear systems with non-symmetric input constraints. The auxiliary design system is introduced to analyze the effect of input constraints, and its states are used to adaptive tracking control design. The spectral radius of the control coefficient matrix is used to relax the nonsingular assumption of the control coefficient matrix. Subsequently, the constrained adaptive control is presented, where command filters are adopted to implement the emulate of actuator physical constraints on the control law and virtual control laws and avoid the tedious analytic computations of time derivatives of virtual control laws in the backstepping procedure. Under the proposed control techniques, the closed-loop semi-global uniformly ultimate bounded stability is achieved via Lyapunov synthesis. Finally, simulation studies are presented to illustrate the effectiveness of the proposed adaptive tracking control. 相似文献
4.
This article presents an integrated fault diagnosis and fault-tolerant control (FTC) methodology for a class of nonlinear multi-input–multi-output systems. Based on the fault information obtained during the diagnostic procedure, an FTC component is designed to compensate for the effect of faults. In the presence of a fault, a baseline controller guarantees the boundedness of all the system signals until the fault is detected. After fault detection and then again after isolation, the controller is reconfigured to improve the tracking performance using online fault diagnostic information. Under certain assumptions, the stability and tracking performances of the closed-loop system are rigorously investigated. It is shown that the system signals always remain bounded and the output tracking error converges to a neighbourhood of the origin of the state space. 相似文献
5.
Chaio-Shiung Chen 《Information Sciences》2009,179(15):2676-2688
This paper proposes a novel dynamic structure neural fuzzy network (DSNFN) to address the adaptive tracking problems of multiple-input-multiple-output (MIMO) uncertain nonlinear systems. The proposed control scheme uses a four-layer neural fuzzy network (NFN) to estimate system uncertainties online. The main feature of this DSNFN is that it can either increase or decrease the number of fuzzy rules over time based on tracking errors. Projection-type adaptation laws for the network parameters are derived from the Lyapunov synthesis approach to ensure network convergence and stable control. A hybrid control scheme that combines the sliding-mode control and the adaptive bound estimation control with different weights improves system performance by suppressing the influence of external disturbances and approximation errors. As the employment of the DSNFN, high-quality tracking performance could be achieved in the system. Furthermore, the trained network avoids the problems of overfitting and underfitting. Simulations performed on a two-link robot manipulator demonstrate the effectiveness of the proposed control scheme. 相似文献
6.
In this paper, a novel adaptive NN control scheme is proposed for a class of uncertain multi-input and multi-output (MIMO) nonlinear time-delay systems. RBF NNs are used to tackle unknown nonlinear functions, then the adaptive NN tracking controller is constructed by combining Lyapunov-Krasovskii functionals and the dynamic surface control (DSC) technique along with the minimal-learning-parameters (MLP) algorithm. The proposed controller guarantees uniform ultimate boundedness (UUB) of all the signals in the closed-loop system, while the tracking error converges to a small neighborhood of the origin. An advantage of the proposed control scheme lies in that the number of adaptive parameters for each subsystem is reduced to one, triple problems of “explosion of complexity”, “curse of dimension” and “controller singularity” are solved, respectively. Finally, a numerical simulation is presented to demonstrate the effectiveness and performance of the proposed scheme. 相似文献
7.
In this article, adaptive control is investigated for a class of discrete-time multi-input-multi-output nonlinear systems in block-triangular form with uncertain couplings of delayed states among subsystems. Future states prediction is carried out to facilitate adaptive control design and auxiliary outputs are introduced to develop a novel compensation mechanism for the uncertain nonlinear couplings. By using Lyapunov method and ordering signals growth rate, it is rigorously proved that all the signals in the whole closed-loop systems are globally bounded and the output tracking errors asymptotically converge to zeros. The effectiveness of the proposed control is demonstrated in the simulation study. 相似文献
8.
This paper investigates an intelligent adaptive control system for multiple-input–multiple-output (MIMO) uncertain nonlinear systems. This control system is comprised of a recurrent-cerebellar-model-articulation-controller (RCMAC) and an auxiliary compensation controller. RCMAC is utilized to approximate a perfect controller, and the parameters of RCMAC are on-line tuned by the derived adaptive laws based on a Lyapunov function. The auxiliary compensation controller is designed to suppress the influence of residual approximation error between the perfect controller and RCMAC. Finally, two MIMO uncertain nonlinear systems, a mass–spring–damper mechanical system and a Chua’s chaotic circuit, are performed to verify the effectiveness of the proposed control scheme. The simulation results confirm that the proposed intelligent adaptive control system can achieve favorable tracking performance with desired robustness. 相似文献
9.
Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks 总被引:6,自引:0,他引:6
Hovakimyan N. Nardi F. Calise A. Nakwan Kim 《Neural Networks, IEEE Transactions on》2002,13(6):1420-1431
We consider adaptive output feedback control of uncertain nonlinear systems, in which both the dynamics and the dimension of the regulated system may be unknown. However, the relative degree of the regulated output is assumed to be known. Given a smooth reference trajectory, the problem is to design a controller that forces the system measurement to track it with bounded errors. The classical approach requires a state observer. Finding a good observer for an uncertain nonlinear system is not an obvious task. We argue that it is sufficient to build an observer for the output tracking error. Ultimate boundedness of the error signals is shown through Lyapunov's direct method. The theoretical results are illustrated in the design of a controller for a fourth-order nonlinear system of relative degree two and a high-bandwidth attitude command system for a model R-50 helicopter. 相似文献
10.
In this paper, adaptive neural tracking control is proposed based on radial basis function neural networks (RBFNNs) for a class of multi-input multi-output (MIMO) nonlinear systems with completely unknown control directions, unknown dynamic disturbances, unmodeled dynamics, and uncertainties with time-varying delay. Using the Nussbaum function properties, the unknown control directions are dealt with. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown upper bound functions of the time-varying delay uncertainties are compensated. The proposed control scheme does not need to calculate the integral of the delayed state functions. Using Young s inequality and RBFNNs, the assumption of unmodeled dynamics is relaxed. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. 相似文献
11.
Choon-Young Lee Ju-Jang Lee 《IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics》2004,34(1):325-333
A new adaptive multiple neural network controller (AMNNC) with a supervisory controller for a class of uncertain nonlinear dynamic systems was developed in this paper. The AMNNC is a kind of adaptive feedback linearizing controller where nonlinearity terms are approximated with multiple neural networks. The weighted sum of the multiple neural networks was used to approximate system nonlinearity for the given task. Each neural network represents the system dynamics for each task. For a job where some tasks are repeated but information on the load is not defined and unknown or varying, the proposed controller is effective because of its capability to memorize control skill for each task with each neural network. For a new task, most similar existing control skills may be used as a starting point of adaptation. With the help of a supervisory controller, the resulting closed-loop system is globally stable in the sense that all signals involved are uniformly bounded. Simulation results on a cartpole system for the changing mass of the pole were illustrated to show the effectiveness of the proposed control scheme for the comparison with the conventional adaptive neural network controller (ANNC). 相似文献
12.
Adaptive NN control of uncertain nonlinear pure-feedback systems 总被引:3,自引:0,他引:3
S.S. GeAuthor Vitae 《Automatica》2002,38(4):671-682
This paper is concerned with the control of nonlinear pure-feedback systems with unknown nonlinear functions. This problem is considered difficult to be dealt with in the control literature, mainly because that the triangular structure of pure-feedback systems has no affine appearance of the variables to be used as virtual controls. To overcome this difficulty, implicit function theorem is firstly exploited to assert the existence of the continuous desired virtual controls. NN approximators are then used to approximate the continuous desired virtual controls and desired practical control. With mild assumptions on the partial derivatives of the unknown functions, the developed adaptive NN control schemes achieve semi-global uniform ultimate boundedness of all the signals in the closed-loop. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters. 相似文献
13.
In this paper,the adaptive fuzzy tracking control is proposed for a class of multi-input and multioutput(MIMO)nonlinear systems in the presence of system uncertainties,unknown non-symmetric input saturation and external disturbances.Fuzzy logic systems(FLS)are used to approximate the system uncertainty of MIMO nonlinear systems.Then,the compound disturbance containing the approximation error and the timevarying external disturbance that cannot be directly measured are estimated via a disturbance observer.By appropriately choosing the gain matrix,the disturbance observer can approximate the compound disturbance well and the estimate error converges to a compact set.This control strategy is further extended to develop adaptive fuzzy tracking control for MIMO nonlinear systems by coping with practical issues in engineering applications,in particular unknown non-symmetric input saturation and control singularity.Within this setting,the disturbance observer technique is combined with the FLS approximation technique to compensate for the efects of unknown input saturation and control singularity.Lyapunov approach based analysis shows that semi-global uniform boundedness of the closed-loop signals is guaranteed under the proposed tracking control techniques.Numerical simulation results are presented to illustrate the efectiveness of the proposed tracking control schemes. 相似文献
14.
Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form 总被引:1,自引:0,他引:1
Dan WangAuthor VitaeJie HuangAuthor Vitae 《Automatica》2002,38(8):1365-1372
A procedure is developed for the design of adaptive neural network controller for a class of SISO uncertain nonlinear systems in pure-feedback form. The design procedure is a combination of adaptive backstepping and neural network based design techniques. It is shown that, under appropriate assumptions, the solution of the closed-loop system is uniformly ultimately bounded. 相似文献
15.
Chih-Min Lin Ya-Fu Peng 《IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics》2004,34(2):1248-1260
An adaptive cerebellar-model-articulation-controller (CMAC)-based supervisory control system is developed for uncertain nonlinear systems. This adaptive CMAC-based supervisory control system consists of an adaptive CMAC and a supervisory controller. In the adaptive CMAC, a CMAC is used to mimic an ideal control law and a compensated controller is designed to recover the residual of the approximation error. The supervisory controller is appended to the adaptive CMAC to force the system states within a predefined constraint set. In this design, if the adaptive CMAC can maintain the system states within the constraint set, the supervisory controller will be idle. Otherwise, the supervisory controller starts working to pull the states back to the constraint set. In addition, the adaptive laws of the control system are derived in the sense of Lyapunov function, so that the stability of the system can be guaranteed. Furthermore, to relax the requirement of approximation error bound, an estimation law is derived to estimate the error bound. Finally, the proposed control system is applied to control a robotic manipulator, a chaotic circuit and a linear piezoelectric ceramic motor (LPCM). Simulation and experimental results demonstrate the effectiveness of the proposed control scheme for uncertain nonlinear systems. 相似文献
16.
An adaptive recurrent cerebellar-model-articulation-controller (RCMAC) sliding-mode control (SMC) system is developed for the uncertain nonlinear systems. This adaptive RCMAC sliding-model control (ARCSMC) system is composed of two systems. One is an adaptive RCMAC system utilized as the main controller, in which an RCMAC is designed to identify the system models. Another is a robust controller utilized to achieve system’s robust characteristics, in which an uncertainty bound estimator is developed to estimate the uncertainty bound so that the chattering phenomenon of control effort can be eliminated. The on-line adaptive laws of the ARCSMC system are derived in the sense of Lyapunov so that the system stability can be guaranteed. Finally, a comparison between SMC and ARCSMC for a chaotic system and a car-following system are presented to illustrate the effectiveness of the proposed ARCSMC system. Simulation results demonstrate that the proposed control scheme can achieve favorable control performances for the chaotic system and car-following systems without the knowledge of system dynamic functions. 相似文献
17.
18.
Gang Sun Zhouhua Peng Hao Wang Weiyao Lan Mingxin Wang 《International journal of control》2013,86(5):912-922
In this paper, a robust adaptive neural control design approach is presented for a class of uncertain pure-feedback nonlinear systems. To reduce the complexity of the both controller structure and computation, only one neural network is used to approximate the lumped unknown function of the system at the last step of the recursive design process. By this approach, the complexity growing problem existing in conventional methods can be eliminated completely. Stability analysis shows that all the closed-loop system signals are uniformly ultimately bounded, and the steady state tracking error can be made arbitrarily small by appropriately choosing control parameters. Simulation results demonstrate the effectiveness and merits of the proposed approach. 相似文献
19.
Chi-Hsu Wang Tsung-Chih Lin Tsu-Tian Lee Han-Leih Liu 《IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics》2002,32(5):583-597
A new hybrid direct/indirect adaptive fuzzy neural network (FNN) controller with a state observer and supervisory controller for a class of uncertain nonlinear dynamic systems is developed in this paper. The hybrid adaptive FNN controller, the free parameters of which can be tuned on-line by an observer-based output feedback control law and adaptive law, is a combination of direct and indirect adaptive FNN controllers. A weighting factor, which can be adjusted by the tradeoff between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive FNN controller and direct adaptive FNN controller. Furthermore, a supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be deactivated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Two nonlinear systems, namely, inverted pendulum system and Chua's (1989) chaotic circuit, are fully illustrated to track sinusoidal signals. The resulting hybrid direct/indirect FNN control systems show better performances, i.e., tracking error and control effort can be made smaller and it is more flexible during the design process. 相似文献
20.
Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time 总被引:1,自引:0,他引:1
Ge S.S. Jin Zhang Tong Heng Lee 《IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics》2004,34(4):1630-1645
In this paper, adaptive neural network (NN) control is investigated for a class of multiinput and multioutput (MIMO) nonlinear systems with unknown bounded disturbances in discrete-time domain. The MIMO system under study consists of several subsystems with each subsystem in strict feedback form. The inputs of the MIMO system are in triangular form. First, through a coordinate transformation, the MIMO system is transformed into a sequential decrease cascade form (SDCF). Then, by using high-order neural networks (HONN) as emulators of the desired controls, an effective neural network control scheme with adaptation laws is developed. Through embedded backstepping, stability of the closed-loop system is proved based on Lyapunov synthesis. The output tracking errors are guaranteed to converge to a residue whose size is adjustable. Simulation results show the effectiveness of the proposed control scheme. 相似文献