首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
利用从金属蒸汽真空弧离子源引出的强束流Ta离子 ,进行了Ta离子注入铝的研究。研究结果表明 ,在离子注入剂量为 5× 10 17cm- 2 ,平均束流密度为 4 0 μA·cm- 2 ,加速电压为 4 2kV下 ,Ta离子注入能在铝表面形成相应的合金层。借助卢瑟福背散射 (RBS)和X射线衍射 (XRD)分析 ,我们发现表面合金层中形成了Al3Ta相 ,Ta在铝中能产生 10 %以上的原子百分浓度 ,其深度高达 2 0 0nm。  相似文献   

2.
杨建华  张通和 《功能材料》2003,34(4):403-404,411
采用由金属蒸汽真空弧(metalvaporvacuumarc,简称MEVVA)离子源引出的强束流脉冲钨离子对H13钢进行了离子注入表面改性研究。在注入剂量为1×1017cm-2,温度为200℃以下,观察到强束流脉冲钨离子注入导致的空洞和空洞的硬化及脆化效应,分析了空洞对注入钨元素浓度深度分布的影响,基于热峰效应(spike),讨论了空洞的形成原因及其与材料耐磨性的关系。  相似文献   

3.
经钨离子束处理的H13钢的表面结构和成分研究   总被引:1,自引:0,他引:1  
杨建华  张通和 《真空》2001,(4):11-13
采用由金属蒸汽真空弧离子源(MEVVA)引出的强束流脉冲钨离子对H13钢进行了离子注入表面改性研究.注入剂量为3×1017cm-2,引出电压为48kV,平均束流为15μA*cm-2.利用卢瑟福背散射谱(RBS)测量了注入表面的成分,借助X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)考察了注入表面的氧化情况及微观结构.研究发现,钨离子注入H13钢能减轻其表面铁元素的氧化;钨元素在其表面的原子百分比可达28%左右,并根据能带论确定了注入样品中钨和铁元素的电子结构.  相似文献   

4.
钼离子注入束流大小对H13钢表层结构与耐磨性能的影响   总被引:1,自引:0,他引:1  
利用金属蒸汽真空弧离子源引出的强束流钼离子,对H13钢进行了高剂量的离子注入。测量了注入试样的磨损性能,发现在注入剂量为3×1017cm-2、注入束流密度低于47μA·cm-2时,其耐磨性得到不同程度的改善。分别利用卢瑟福背散射谱(RBS)、X射线衍射(XRD)和X光电子能谱(XPS)测试了注入试样的表面成分及其微观结构。讨论了H13钢耐磨性的影响因素。  相似文献   

5.
利用强流脉冲离子束(HIPIB)对316L不锈钢进行了表面辐照处理.辐照参数为:离子种类包括70%C 和30%H ,离子能量E=300keV,束流密度J=100,200,300A/cm2,辐照次数N=10,脉冲宽度τ=75ns,真空室本底真空度为10-3Pa.采用扫描电子显微镜(SEM)观察辐照前后试样的表面形貌;用X射线衍射(XRD)分析辐照前后试样表面层结构和成分的变化.结果表明,HIPIB辐照使试样表面光滑化,且表面层产生择优取向.研究了HIPIB辐照对316L不锈钢700℃蠕变性能的影响,发现辐照后试样的蠕变行为与束流密度密切相关.当束流密度为100,200A/cm2时,HIPIB辐照延长了原始试样的蠕变寿命;相反,300A/cm2的HIPIB辐照则使其缩短.  相似文献   

6.
低密度高阻尼金属/金属复合材料   总被引:8,自引:1,他引:8  
采用快速凝固 /粉末冶金法制备了Al-7Fe -1 .4Mo -1 .4Si(FMS0 71 4)合金及其复合材料FMS0 71 4/xAl(x=1 0~ 2 0 )和FMS0 71 4/y(Zn-3 0Al) (y =1 0~ 2 0 )w(B) / % .运用三点弯曲法、拉伸试验和阿基米德法分别测试了其阻尼性能、拉伸性能和密度 .结果表明 :FMS0 71 4合金本身即具有较好的阻尼性能 .添加纯Al粉对其阻尼性能影响不大 ;而添加Zn-3 0Al合金粉则显著提高其阻尼性能 .FMS0 71 4合金及其复合材料的阻尼性能与拉伸强度均优于LD7CS合金 .其中 ,FMS0 71 4/ 1 5 (Zn-3 0Al)具有最佳的综合性能 ,在航空和航天领域显示出良好的应用前景 .  相似文献   

7.
介绍一套具有质量分辨能力的低能离子束原位研究系统及其性能。在该系统中 ,低能离子束能量可调范围为 5~ 2 0 0eV ,束流为 1~ 6 μA ;在 10 0eV的能量下 ,束流密度可达 10 0 μA/cm2 ;离子束能量降至 10eV时 ,束流密度为 10~ 2 0 μA/cm2 。能量分散为± 0 5eV。离子的质量和能量分别由四极质谱仪和筒镜能量分析器表征 ,离子束束流和束流密度分布用两个法拉第杯进行测量。WienFilter的质量分辨率为 4 0。系统上装有XPS ,UPS ,LEED等分析仪器 ,确保在UHV条件下实现原位表面研究  相似文献   

8.
采用Ta和Ag离子双注入对医用Ti6Al4V合金进行表面改性,以Ta离子1.5×1017 ions/cm2先注入,Ag离子1×1017 ions/cm2后注入合金样品表面.采用动电位极化曲线研究Ta+Ag离子双注入前后Ti6Al4V合金抗Hank’s溶液腐蚀性能,利用小角掠射X射线衍射技术研究离子双注入前后Ti6Al4V合金表面物相组成,以X射线光电子能谱技术分析离子双注入样品表面、离子注入合金腐蚀样品表面元素存在的化合态.结果表明,Ta+Ag离子双注入改善了Ti6Al4V合金抗Hank’s溶液腐蚀性能,离子双注入合金的腐蚀电流密度与对照样相比降低了94.6%.离子双注入Ti6Al4V合金表面生成的耐蚀合金层、少量单质Ta和Ag、合金表面的氧化物腐蚀阻挡层有利于合金抗Hank’s溶液腐蚀性能的改善.  相似文献   

9.
MoO3的饱和蒸气压较高 ,可以直接用热反应蒸发法制备In2 O3∶Mo(IMO)透明导电薄膜。XPS和XRD测试结果证明 ,IMO薄膜中的Mo是以Mo6 离子形式取代了In2 O3 晶格中的In3 离子而存在的 ,没有形成新的化合物 ,也没有改变In2 O3 的体心立方晶格结构。在不进行退火、放电等工艺处理的情况下 ,用常规的反应蒸发法 ,在约 35 0℃ ,1 2mm厚的载玻片上制备的IMO薄膜在可见光区域的平均透射比 (含玻璃基底 )可超过 0 80 ,同时电阻率可以低至 1 7× 10 -4 Ωcm。  相似文献   

10.
利用强流脉冲离子束(HIPIB)辐照DZ4镍基高温合金表面,离子束的加速电压为250 kV,脉冲宽度为70ns,束流密度为100A/cm2,脉冲次数分别为2,5,10和15次.根据扫描电镜分析得出,脉冲次数少时(2次和5次)离子束辐照后DZ4合金的表面出现熔坑,随着辐照次数的增加,表面的熔坑数量减少,多次脉冲(10次和15次)处理后,表面熔坑基本消失,表面变得平整;并且在近表层大约1μm~2 μm范围内晶粒细化.X射线衍射分析显示离子束处理后表面层存在压应力.HIPIB辐照处理使DZ4合金的表面在200 μm的范围内硬度有提高,同时其耐腐蚀和耐磨性能有明显提高.  相似文献   

11.
Molybdenum ions generated by a metal vapour vacuum arc (MEVVA) ion source were implanted into pure iron at doses of 1 × 1017 and 3 × 1017 ions cm−2 with an extraction voltage of 45 kV. Auger electron spectroscopy (AES) sputtering depth profiles, X-ray photoelectron spectroscopy (XPS) analysis, X-ray diffraction (XRD) analysis, microhardness and the residual stress of the implanted specimen were studied. The results show that molybdenum atoms exist in the implanted layer at a maximum concentration 20 at.%. A new phase (Fe3C) is formed in the specimens implanted higher doses due to carbon incorporation during sputtering of the natural oxide film from the implanted surface. The Fe2Mo phase is formed in both dose regimes. Residual compressive stresses of 310 and 560 MPa were measured on the surfaces of the specimens after molybdenum ion implantation at 1 × 1017 and 3 × 1017 ions/cm2 respectively due to a local expansion of the lattice in the near-surface region. Due to the existence of residual compressive stress and the formation of the new phases, the microhardness of pure iron specimens was increased from 264 to 325 and 333 kgf mm−2 by molybdenum ion implantation at 1 × 1017 and 3 × 1017 ions cm−2 respectively.  相似文献   

12.
用X射线光电子能谱和小掠射角X射线衍射研究了铝合金LY12等离子体基离子注入形成的AlN/TiN改性层的结构。结果表明 ,N和Ti能注入铝合金表面 ,N在注入层呈类高斯分布 ,而Ti沿注入方向呈梯度递减。后注入的Ti和N对先注入的N的含量和分布有重要影响。同时注入Ti和N ,能在试样表面形成一层稳定的Ti,N层。所形成的AlN/TiN改性层主要由TiO2 ,TiN ,TiAl3 ,Al2 O3 ,AlN相组成  相似文献   

13.
Ti+注入H13钢的注入层研究   总被引:1,自引:0,他引:1  
Ti (10 0kV ,3× 10 17cm- 2 )注入H13钢 ,表面注入层的化学组成和微观结构发生了很大的变化。俄歇分析表明 ,注入元素Ti在钢表面层的剖面浓度分布呈近似高斯分布 ,在 4 0nm处Ti的浓度达到最大值。离子束真空碳化导致在钢的表面形成一层约 2 0nm的“富碳层”。透射电镜分析表明 ,表面层的微观形貌由注入前的板条状马氏体结构转变成注入后的微胞状结构。电子衍射则证实 ,表面注入层已出现非晶化 ,并且有约 5nm的TiC颗粒析出。摩擦磨损实验进一步表明 ,注入后钢的摩擦系数降低 70 % ,磨损率降低 98%。  相似文献   

14.
采用等离子体浸没式离子注入对45钢进行氮离子注入。对注入表层的成分、组织和性能进行了分析。研究结果表明:注入层的剖面氮浓度分布呈高斯分布特征,注入层中有大量氮化物相形成,注入层的显微硬度和摩擦性能有明显改善。  相似文献   

15.
The results of experimental study of nanoscale intermetallic formation in surface layer of a metal target at ion implantation are presented. To increase the thickness of the ion implanted surface layer the high intensive ion implantation is used. Compared with the ordinary ion implantation, the high intensive ion implantation allows a much thicker modified surface layer. Pure polycrystalline nickel was chosen as a target. Nickel samples were irradiated with Al ions on the vacuum-arc ion beam and plasma flow source "Raduga-5". It was shown that at the high intensity ion implantation the fine dispersed particles of Ni3AI, NiAl intermetallic compounds and solid solution Al in Ni are formed in the nickel surface layer of 200 nm and thicker. The formation of phases takes place in complete correspondence with the Ni-AI phase diagram.  相似文献   

16.
In order to increase the depth or concentration of Ti ion implantation of pure iron, the surface mechanical attrition treatment(SMAT), which can fabricate a nanometer-grained surface layer without porosity and contamination in a pure iron plate, was used before ion implantation. Ti ion was implanted into the SMA treated sample and coarse-grained counterpart by using a metal vapor vacuum arc source implanter. The changing of depth and concentration of Ti was studied in a function of implantation time.By optical microscopy, transmission electron microscopy and X-ray diffraction, the grain size of the nano structured surface was studied. Micro-hardness, friction and wear behavior of nano surface layers were studied. By energy dispersive X-ray spectroscopy and Auger electron spectroscopy, the chemical composition and concentration of Ti ion in the surface implantation layer were studied. Experimental results showed that the concentration of Ti increased dramatically compared with untreated coarsegrained samples, which is attributed to the existence of higher density of defects(supersaturated vacancies, dislocations, non-equilibrium grain boundaries etc.) and compression stress field in the SMA treated nanocrystallined surface layer. The interaction between the defects and the implanted solute atoms leads to the increment of solid solubility. But the implantation depth showed inconspicuous change. It is shown that the ion range is just relevant to the energy and mass of the ion, dose of injection,the mass and density of target material.  相似文献   

17.
铝合金等离子体基离子注入形成AlN/TiN层及其耐磨性能   总被引:4,自引:0,他引:4  
用X射线光电子能谱 (XPS)和小掠射角X射线衍射 (GAXRD)研究了铝合金LY12等离子体基离子注入形成AlN/TiN改性层的成分分布及相结构 .在此基础上测量了改性层的纳米硬度 ,并进行了摩擦磨损试验 .结果表明 ,氮和钛都能有效地注入到铝合金里 ,后注入的元素对先注元素的含量和分布有重要影响 .钛、氮同时注入在试样表面形成一层稳定的钛、氮化合层 .和未改性试样相比 ,所形成的AlN/TiN改性层纳米硬度及承载能力都提高 5倍以上 .在低滑动载荷下 ,摩擦系数减小 70 %以上 ,耐磨性提高近 10倍 ,耐磨寿命提高了近 6倍 ,粘着磨损程度显著减轻 .随着载荷的增加 ,相应的耐磨性能有所降低 .适当的改性层结构及其中分布的TiO2 、TiN、TiAl3、Al2 O3、AlN等相是性能改善的主要原因  相似文献   

18.
It has been found possible to prepare excellent solar selective molybdenum black films by a modified catholic electrodeposition technique. These films have been characterized using XPS, AES depth profiling, SEM, chemical analysis, X-ray diffraction and VIS-IR reflectance spectroscopy. The study shows that the film is composite of MoO3 matrix containing fine nickel and copper particles. It is also observed that the copper concentration increases from the surface of the film towards the substrate. Reported solar selectivity can be explained using the Maxwell Gannett theory along with the stacked layer treatment developed by Anderson.  相似文献   

19.
用X射线光电子能谱(XPS)和小掠射角X射线衍射(GAXRD)研究了铝合金LY12等离子体基离子注入形成AIN/TiN改性层的成分分布及相结构.在此基础上测量了改性层的纳米硬度,并进行了摩擦磨损试验.结果表明,氮和钛都能有效地注入到铝合金里,后注入的元素对先注元素的含量和分布有重要影响.钛、氮同时注入在试样表面形成一层稳定的钛、氮化合层.和未改性试样相比,所形成的AIN/TiN改性层纳米硬度及承载能力都提高5倍以上.在低滑动载荷下,摩擦系数减小70%以上,耐磨性提高近10倍,耐磨寿命提高了近6倍,粘着磨损程度显著减轻.随着载荷的增加,相应的耐磨性能有所降低.适当的改性层结构及其中分布的TiO2、TiN、TiAl3、Al2O3、AIN等相是性能改善的主要原因.,The disfribution of composition and microstructure of the AIN/TiN layer of aluminum alloy 2024 im-planted by Plasma Based Ion Implantation(PBⅡ) were characterized using X -ray Photoelectron Spectroscopy(XPS) and Glancing Angle X -ray Diffraction (GAXRD). XPS results show that N and Ti can be implantedinto 2024 effectively, the content of N presents a Gaussian - like distribution, and that of Ti decreases gradu-ally along the implanted direction from the surface. The post -implanted elements have great influence on thecontent and depth profile of the pre - implanted ones. The simultaneously implanted Ti and N can form asteady layer of Ti and N on the surface. In comparison with 2024, the AIN/TiN layer has remarkably improvedthe mechanical properties, of which both the nano - hardness and the load bearing capacity have in most cases increased over 5 times, the friction coefficient has been decreased more than 70% , wear life has been im-proved near to 6 times, and the wear resistance has enhanced approximately 10 times and the degree of adhe-sive wear has lightened markedly at low sliding loads. Nevertheless, the wear-resistant properties are reducedgradually with increasing the sliding load. The great improvement of the mechanical properties is mainly owingto the proper structure of the layer and the presence of TiO2, TiN, TiAl3, Al2O3, and AIN phases in it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号