首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence correlation spectroscopy (FCS) has become an increasingly important measurement tool for biological and biomedical investigations, with the capability to assay molecular dynamics and interactions both in vitro and within living cells. Information recovery in FCS requires an accurate characterization and calibration of the observation volume. A number of recent reports have demonstrated that the calibration of the observation volume is excitation power dependent, a complication that arises due to excitation saturation. While quantitative models are now available to account for these volume variations, many researchers attempt to avoid saturation issues by working with low nonsaturating excitation intensities. For two-photon excited fluorescence, this is typically thought to be achievable by working with excitation powers for which the total measured fluorescence signal maintains its quadratic dependence on excitation intensity. We demonstrate that observing only the power dependence of the fluorescence intensity will tend to underestimate the importance of saturation, and explain these findings in terms of basic physical models.  相似文献   

2.
Ultrafast lasers have found increasing use in scanning optical microscopy due to their very high peak power in generating multiphoton excitations. A mode-locked Ti:sapphire laser is often employed for such purposes. Together with a synchronously pumped optical parametric oscillator (OPO), the spectral range available can be extended to 1,050-1,300 nm. This broader range available greatly facilitates the excitation of second harmonic generation (SHG) and third harmonic generation (THG) due to better satisfaction of phase matching condition that is achieved with a longer excitation wavelength. Dental sections are then investigated with the contrasts from harmonic generation. In addition, through intra-cavity doubling wavelengths from 525-650 nm are made available for effective two-photon (2-p) excitation with the equivalent photon energy in the UVB range (290-320 nm) and beyond. This new capacity allows UV (auto-) fluorescence excitation and imaging, for example, from some amino acids, such as tyrosine, tryptophan, and glycine.  相似文献   

3.
The central region of the intervertebral disc (IVD) in infant humans is made and maintained by notochordal cells (NCs). These cells disappear during maturation to be replaced by mature chondrocyte-like cells. NCs are completely different morphologically from the mature chondrocyte-like IVD cells and have complex and essential functions but little is known about them. Recently, two-photon laser scanning microscopy (TPLSM) using near-infrared (NIR) femtosecond pulsed lasers has emerged as a promising noninvasive optical technique for observing unfixed living 3D biological specimens in situ and in vitro. Several lines of evidence suggest that compared with conventional laser scanning confocal microscopy (LSCM), femtosecond NIR laser-based TPLSM has any number of advantages including 3D resolution without a spatial filter (confocal pinhole), minimal photobleaching, and photodamage above and below the focal plane, and importantly, greater depth penetration. We have thus taken advantage of these unique features of femtosecond laser-based TPLSM for vital 3D imaging in conjunction with advanced spatial-volume rendering modalities to compare morphologies of NCs/clusters from pig caudal discs with chondrocyte-like IVD cells from bovine caudal discs, both in ex vivo tissue and when isolated and grown in vitro within 3D alginate scaffolds. Our results provide evidence that (a) ex vivo notochordal tissue consists of areas with NC clusters, and those dominated by tubular structures of low cell density (b) within 3D in vitro scaffolds the morphology of NC is heterogeneous and the cells contain distinct cytoplasmic vacuole-like structures occasionally including acidic subinclusions (c) a quantitative determination based on 3D spatial and volumetric-rendering reveals an average NC diameter of 22.05 microm (range 11.96-46.63 microm) and NC volume of 9701 microm(3) (2041-36427 microm(3)) whereas chondrocyte-like cells have a mean volume of 3279 microm(3) and diameter of 12.20 microm. Taken together, this study demonstrates that femtosecond TPLSM has unique advantages over other conventional histological and in particular LSCM for high resolution noninvasive vital characterization of notochordal and chondrocyte-like cells of IVD over extended depths beyond 300-500 microm.  相似文献   

4.
Specimen-induced aberrations cause a reduction in signal levels and resolution in fluorescence microscopy. Aberrations also affect the image contrast achieved by these microscopes. We model the effects of aberrations on the fluorescence signals acquired from different specimen structures, such as point-like, linear, planar and volume structures, when imaged by conventional, confocal and two-photon microscopes. From this we derive the image contrast obtained when observing combinations of such structures. We show that the effect of aberrations on the visibility of fine features depends upon the specimen morphology and that the contrast is less significantly affected in microscopes exhibiting optical sectioning. For example, we show that point objects become indistinguishable from background fluorescence in the presence of aberrations, particularly when imaged in a conventional fluorescence microscope. This demonstrates the significant advantage of using confocal or two-photon microscopes over conventional instruments when aberrations are present.  相似文献   

5.
Wang C  Qiao L  He F  Cheng Y  Xu Z 《Journal of microscopy》2011,243(2):179-183
We experimentally demonstrate, for the first time to the best of our knowledge, two-photon fluorescence imaging with a femtosecond optical parametric amplifier. In particular, we systematically compare the imaging depths of two-photon fluorescence microscopes based on three different excitation sources, including a femtosecond oscillator, a femtosecond regenerative amplifier and the optical parametric amplifier. The results show that the optical parametric amplifier can greatly extend the penetration depth by approximately 227% as compared with that obtained with the femtosecond oscillator due to effective suppression of scattering at longer wavelength and enhanced excitation efficiency enabled by higher pulse energy.  相似文献   

6.
Background : Multifunctional two‐photon laser scanning microscopy provides attractive advantages over conventional two‐photon laser scanning microscopy. For the first time, simultaneous measurement of the second harmonic generation (SHG) signals in the forward and backward directions and two photon excitation fluorescence were achieved from the deep shade plant Selaginella erythropus. Results : These measurements show that the S. erythropus leaves produce high SHG signals in both directions and the SHG signals strongly depend on the laser's status of polarization and the orientation of the dipole moment in the molecules that interact with the laser light. The novelty of this work is (1) uncovering the unusual structure of S. erythropus leaves, including diverse chloroplasts, various cell types and micromophology, which are consistent with observations from general electron microscopy; and (2) using the multifunctional two‐photon laser scanning microscopy by combining three platforms of laser scanning microscopy, fluorescence microscopy, harmonic generation microscopy and polarizing microscopy for detecting the SHG signals in the forward and backward directions, as well as two photon excitation fluorescence. Conclusions : With the multifunctional two‐photon laser scanning microscopy, one can use noninvasive SHG imaging to reveal the true architecture of the sample, without photodamage or photobleaching, by utilizing the fact that the SHG is known to leave no energy deposition on the interacting matter because of the SHG virtual energy conservation characteristic.  相似文献   

7.
In recent years, nonlinear laser scanning microscopy has gained much attention due to its unique ability of deep optical sectioning. Based on our previous studies, a 1,200-1,300-nm femtosecond laser can provide superior penetration capability with minimized photodamage possibility. However, with the longer wavelength excitation, three-photon-fluorescence (3PF) would be necessary for efficient use of intrinsic and extrinsic visible fluorophores. The three-photon process can provide much better spatial resolution than two-photon-fluorescence due to the cubic power dependency. On the other hand, third-harmonic-generation (THG), another intrinsic three-photon process, is interface-sensitive and can be used as a general structural imaging modality to show the exact location of cellular membranes. The virtual-transition characteristic of THG prevents any excess energy from releasing in bio-tissues and, thus, THG acts as a truly noninvasive imaging tool. Here we demonstrated the first combined 3PF and THG microscopy, which can provide three-dimensional high-resolution images with both functional molecule specificity and sub-micrometer structural mapping capability. The simultaneously acquired 3PF and THG images based on a 1,230-nm Cr:forsterite femtosecond laser are shown with a Hoechst-labeled hepatic cell sample. Strong 3PF around 450 nm from DNA-bounded Hoechst-33258 can be observed inside each nucleus while THG reveals the location of plasma membranes and other membrane-based organelles such as mitochondria. Considering that the maximum-allowable laser power in common nonlinear laser microscopy is less than 10 mW at 800 nm, it is remarkable that even with a 100-mW 1,230-nm incident power, there is no observable photo damage on the cells, demonstrating the noninvasiveness of this novel microscopy technique.  相似文献   

8.
Because of the spreading of nonlinear microscopies in biology, there is a strong demand for specifically engineered probes in these applications. Herein, we report on the imaging properties in living cells and nude mice brains of recently developed water soluble blue fluorophores that show efficient diffusion through cell membranes and blood-brain barriers. They are characterized by two-photon absorption cross-sections of 100-150 Goeppert-Mayer range in the near IR and fluorescence efficiencies of up to 72% in water. They were found to stain homogeneously the cytoplasm of cultured living cells within minutes. Moreover, their diffusion times and fluorescence characteristics in the cytoplasm suggest a hydrophobic association with intracellular membranes. Their intracellular fluorescent decays were found to be almost mono-exponential, a very favorable feature for fluorescence lifetime imaging. Two photon images of living cells were obtained with a good signal to noise ratio using laser powers in the sub-milliwatt range. This allows continuous imaging without significant photobleaching for tens of minutes. In addition, these fluorophores allowed in vivo three-dimensional two-photon imaging of mice cortex vasculatures and extra vasculature structures, with no sign of toxicity.  相似文献   

9.
In this work, we proposed and built a multimodal optical setup that extends a commercially available confocal microscope (Olympus VF300) to include nonlinear second harmonic generation (SHG) and third harmonic generation (THG) optical (NLO) microscopy and fluorescence lifetime imaging microscopy (FLIM). We explored all the flexibility offered by this commercial confocal microscope to include the nonlinear microscopy capabilities. The setup allows image acquisition with confocal, brightfield, NLO/multiphoton and FLIM imaging. Simultaneously, two‐photon excited fluorescence (TPEF) and SHG are well established in the biomedical imaging area, because one can use the same ultrafast laser and detectors set to acquire both signals simultaneously. Because the integration with FLIM requires a separated modulus, there are fewer reports of TPEF+SHG+FLIM in the literature. The lack of reports of a TPEF+SHG+THG+FLIM system is mainly due to difficulties with THG because the present NLO laser sources generate THG in an UV wavelength range incompatible with microscope optics. In this article, we report the development of an easy‐to‐operate platform capable to perform two‐photon fluorescence (TPFE), SHG, THG, and FLIM using a single 80 MHz femtosecond Ti:sapphire laser source. We described the modifications over the confocal system necessary to implement this integration and verified the presence of SHG and THG signals by several physical evidences. Finally, we demonstrated the use of this integrated system by acquiring images of vegetables and epithelial cancer biological samples. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Stimulated emission depletion (STED) microscopy is a useful tool in investigation for super‐resolution realm. By silencing the peripheral fluorophores of the excited spot, leaving only the very centre zone vigorous for fluorescence, the effective point spread function (PSF) could be immensely squeezed and subcellular structures, such as organelles, become discernable. Nevertheless, because of the low cross‐section of stimulated emission and the short fluorescence lifetime, the depletion power density has to be extremely higher than the excitation power density and molecules are exposed in high risk of photobleaching. The existence of photobleaching greatly limits the research of STED in achieving higher resolution and more delicate imaging quality, as well as long‐term and dynamic observation. Since the first experimental implementation of STED microscopy, researchers have lift out variety of methods and techniques to alleviate the problem. This paper would present some researches via conventional methods which have been explored and utilised relatively thoroughly, such as fast scanning, time‐gating, two‐photon excitation (TPE), triplet relaxation (T‐Rex) and background suppression. Alternatively, several up‐to‐date techniques, especially adaptive illumination, would also be unveiled for discussion in this paper. The contrast and discussion of these modalities would play an important role in ameliorating the research of STED microscopy.  相似文献   

11.
Multiphoton fluorescence excitation microscopy is almost invariably conducted with samples whose refractive index differ from that of the objective immersion medium, conditions that cause spherical aberration. Due to the quadratic nature of multiphoton fluorescence excitation, spherical aberration is expected to profoundly affect the depth dependence of fluorescence excitation. In order to determine the effect of refractive index mismatch in multiphoton fluorescence excitation microscopy, we measured signal attenuation, photobleaching rates and resolution degradation with depth in homogeneous samples with minimal light scattering and absorption over a range of refractive indices. These studies demonstrate that signal levels and resolution both rapidly decline with depth into refractive index mismatched samples. Analyses of photobleaching rates indicate that the preponderance of signal attenuation with depth results from decreased rates of fluorescence excitation, even in a system with a descanned emission collection pathway. Similar results were obtained in analyses of fluorescence microspheres embedded in rat kidney tissue, demonstrating that spherical aberration is an important limiting factor in multiphoton fluorescence excitation microscopy of biological samples.  相似文献   

12.
13.
We present the data obtained by scanning tunnelling microscopy combined with scanning electron microscopy of the digitally encoded structure on a stamper used to fabricate optical discs. The combination allows us to focus the STM tip on a preselected spot with a precision of ?0·3 μm. The data show the superiority of STM for a more detailed characterization of shape, width, length, height and fine structure appearing on the sample. We also show the influence of tip shape on STM resolution. Simultaneous use of both microscopes is possible but high electron doses produce an insulating layer of contaminants thick enough to make STM operation impossible.  相似文献   

14.
为了实现可控环形焦斑的整形,提出了一套基于单压电变形镜的整形方法。首先结合波前衍射理论和随机并行梯度下降算法模拟迭代出环形焦斑整形所需的调制相位,进而利用波前传感器探测光束的波前信息,控制变形镜重构目标光斑对应的调制相位,实现聚焦光斑的整形。搭建了一套基于62单元单压电变形镜的光斑整形实验平台,采用焦平面上的CCD记录远场聚焦光斑。实验结果表明,该方法实现了对不同直径(0.32,0.4,0.6 mm)和宽度(0.05,0.08,0.1mm)环形焦斑的整形,可有效应用于激光束整形。  相似文献   

15.
Two-photon excitation laser scanning fluorescence microscopy (2p-LSM) was compared with UV-excitation confocal laser scanning fluorescence microscopy (UV-CLSM) in terms of three-dimensional (3-D) calcium imaging of living cells in culture. Indo-1 was used as a calcium indicator. Since the excitation volume is more limited and excitation wavelengths are longer in 2p-LSM than in UV-CLSM, 2p-LSM exhibited several advantages over UV-CLSM: (1) a lower level of background signal by a factor of 6–17, which enhances the contrast by a factor of 6–21; (2) a lower rate of photobleaching by a factor of 2–4; (3) slightly lower phototoxicity. When 3-D images were repeatedly acquired, the calcium concentration determined by UV-CLSM depended strongly on the number of data acquisitions and the nuclear regions falsely exhibited low calcium concentrations, probably due to an interplay of different levels of photobleaching of Indo-1 and autofluorescence, while the calcium concentration evaluated by 2p-LSM was stable and homogeneous throughout the cytoplasm. The spatial resolution of 2p-LSM was worse by 10% in the focal plane and by 30% along the optical axis due to the longer excitation wavelength. This disadvantage can be overcome by the addition of a confocal pinhole (two-photon excitation confocal laser scanning fluorescence microscopy), which made the resolution similar to that in UV-CLSM. These results indicate that 2p-LSM is preferable for repeated 3-D reconstruction of calcium concentration in living cells. In UV-CLSM, 0.18-mW laser power with a 2.φ pinhole (in normalized optical coordinate) gives better signal-to-noise ratio, contrast and resolution than 0.09-mW laser power with a 4.9-φ pinhole. However, since the damage to cells and the rate of photobleaching is substantially greater under the former condition, it is not suitable for repeated acquisition of 3-D images.  相似文献   

16.
17.
Nonlinear microscopies including multiphoton excitation fluorescence microscopy and multiple-harmonic generation microscopy have recently gained popularity for cellular and tissue imaging. The optimization of these imaging methods for minimally invasive use requires optical fibers to conduct light into tight space, where free-space delivery is difficult. The delivery of high-peak power laser pulses with optical fibers is limited by dispersion resulting from nonlinear refractive index responses. In this article, we characterize a variety of commonly used optical fibers in terms of how they affect pulse profile and imaging performance of nonlinear microscopy; the following parameters are quantified: spectral bandwidth and temporal pulse width, two-photon excitation efficiency, and optical resolution. A theoretical explanation for the measured performance of these fibers is also provided.  相似文献   

18.
A major challenge of cancer biology is to visualize the dynamics of the metastatic process in secondary organs at high optical resolution in vivo real-time. Here, we presented intravital, dual-colored imaging of liver metastasis formation from a single cancer cell to metastatic colonies in the living liver of living mice using two photon laser scanning microscopy (TPLSM). Red fluorescent protein expressing murine (SL4) or human (HT29) colorectal cancer cell lines were inoculated to the spleen of green fluorescent protein expressing mice. Intravital TPLSM was performed by exteriorizing and fixing the liver lobe of living mice. This was repeated several times for the long-term imaging of the same mouse. Viable cancer cells in the living liver of living mice were visualized intravitally at a magnification of over 600×. Single cancer cells were arrested within hepatic sinusoids 2 h after injection. Platelet aggregation surrounding a cancer cell was observed, indicating a phenomenon of tumor-cell induced platelet aggregation. Cancer cells were extravasated from hepatic sinusoids to the space of Disse. Protrusions of Kupffer cells surrounding a cancer cell were observed, indicating that Kupffer cells appear to phagocytose cancer cells. SL4 cells formed liver metastatic colonies with extensive stromal reaction. Liver metastases by HT29 cells were observed as a cluster of micrometastatic nodules. High-resolution, dual-colored, real-time visualization of cancer metastasis using intravital TLPSM can help to understand spatiotemporal tumor-host interactions during metastatic processes in the living organs of living animals.  相似文献   

19.
In the femtoliter observation volume of a two-photon microscope, multiple fluorophores can be present and complex photophysics can take place. Combined detection of the fluorescence emission spectra and lifetimes can provide deeper insight into specimen properties than these two imaging modalities taken separately. Therefore, we have developed a detection scheme based on a frequency-modulated multichannel photomultiplier, which measures simultaneously the spectrum and the lifetime of the emitted fluorescence. Experimentally, the efficiency of the frequency domain lifetime measurement was compared to a time domain set-up. The performance of this spectrally and lifetime-resolved microscope was evaluated on reference specimens and living cells labeled with three different stains targeting the membrane, the mitochondria, and the nucleus.  相似文献   

20.
We show two-photon spectra and lifetimes acquired using conventional confocal microscopes equipped with an ultra-short pulsed laser and a time-gated intensified charge coupled device. We report on the two-photon spectra and lifetimes of Alexa350, enhanced green fluorescent protein (EGFP), EGFP-CD46, and Cy3 labelled antibodies. Cellular and extracellular EGFP two-photon spectra and lifetimes are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号