首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsets of neurons ensheathed by perineuronal nets containing chondroitin unsulfated proteoglycan have been immunohistochemically mapped throughout the rat central nervous system from the olfactory bulb to the spinal cord. A variable proportion of neurons were outlined by immunoreactivity for the monoclonal antibody (Mab 1B5), but only after chondroitinase ABC digestion. In forebrain cortical structures the only immunoreactive nets were around interneurons; in contrast, throughout the brainstem and spinal cord a large proportion of projection neurons were surrounded by intense immunoreactivity. Immunoreactivity was ordinarily found in the neuropil between neurons surrounded by an immunopositive net. By contrast, within the pyriform cortex the neuropil of the plexiform layer was intensely immunoreactive even though no perineuronal net could be found. The presence of perineuronal nets could not be correlated with any single class of neurons; however a few functionally related groups (e.g., motor and motor-related structures: motor neurons both in the spinal cord and in the efferent somatic nuclei of the brainstem, deep cerebellar nuclei, vestibular nuclei; red nucleus, reticular formation; central auditory pathway: ventral cochlear nucleus, trapezoid body, superior olive, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body) were the main components of the neuronal subpopulation displaying chondroitin unsulfated proteoglycans in the surrounding extracellular matrix. The immunodecorated neurons found in the present study and those shown by different monoclonal antibodies or by lectin cytochemistry, revealed consistent overlapping of their distribution patterns.  相似文献   

2.
3.
Neuron survival and axonal regeneration become severely limited during early postnatal development. In conjunction with our recent organotypic analysis of regeneration in the auditory midbrain, we wished to determine whether neurotrophins could serve as a trophic substance during the postnatal period. Therefore, the current study examines the development of three neurotrophin receptor tyrosine kinases (TrkA, TrkB, and TrkC) in the gerbil auditory brainstem. Immunoreactivity to TrkA, the nerve growth-factor receptor, was observed in nonneuronal cells during the first two postnatal weeks. In the cochlear nucleus of mature animals, however, there was a TrkA-positive neuronal subpopulation. In contrast, immunoreactivity to TrkB and TrkC (the receptors for brain-derived neurotrophic factor and neurotrophin-3, respectively) displayed a widespread distribution in the auditory brainstem. At postnatal day 0, TrkB and TrkC staining was virtually absent from auditory nuclei, although immunopositive neurons were present in the mesencephalic trigeminal nucleus. By postnatal day 7, TrkB- and TrkC-positive neurons were present in most brainstem auditory nuclei. At postnatal day 15, TrkB immunoreactivity was observed throughout the inferior colliculus (IC), the cochlear nucleus, the medial and lateral nuclei of the trapezoid body, and the lateral superior olive, whereas TrkC labeled only a subpopulation of neurons within the central nucleus of the IC. The TrkB immunoreactivity was present on both neuronal somata and dendrites, whereas TrkC was generally restricted to cell bodies. At postnatal day 30, TrkB immunostaining was observed on most neurons of the IC. The medial and lateral nuclei of the trapezoid body displayed extremely strong TrkB staining, followed by the cochlear nucleus. In contrast, the TrkC immunostaining was decreased dramatically by postnatal day 21. Observations at the ultrastructural level confirmed a neuronal localization of TrkB and TrkC. Immunostaining for both receptors was restricted largely to the postsynaptic density of synaptic profiles in both dendrites and somata. In summary, this study illustrates a differential pattern of immunoreactivity between three neurotrophin receptors during development. The general increase of TrkB expression is well correlated with the onset of sound-evoked activity in this system, and its synaptic localization suggests that it may be involved in the modulation or maintenance of postsynaptic physiology.  相似文献   

4.
5.
Expression of c-fos mRNA was studied in the adult rat brain following cochlear ablations by using in situ hybridization. In normal animals, expression was produced by acoustic stimulation and was found to be tonotopically distributed in many auditory nuclei. Following unilateral cochlear ablation, acoustically driven expression was eliminated or decreased in areas normally activated by the ablated ear, e.g., the ipsilateral dorsal and ventral cochlear nuclei, dorsal periolivary nuclei, and lateral nucleus of the trapezoid body and the contralateral medial and ventral nuclei of the trapezoid body, lateral lemniscal nuclei, and inferior colliculus. These deficits did not recover, even after long survivals up to 6 months. Results also indicated that neurons in the dorsal cochlear nucleus could be activated by contralateral stimulation in the absence of ipsilateral cochlear input and that the influence of the contralateral ear was tonotopically organized. Results also indicated that c-fos expression rose rapidly and persisted for up to 6 months in neurons in the rostral part of the contralateral medial nucleus of the trapezoid body following a cochlear ablation, even in the absence of acoustic stimulation. This response may reflect a release of constitutive excitatory inputs normally suppressed by missing afferent input or changes in homeostatic gene expression related to sensory deprivation. Instances of transient, surgery-dependent increases in c-fos mRNA expression in the absence of acoustic stimulation were observed in the superficial dorsal cochlear nucleus and the cochlear nerve root on the ablated side.  相似文献   

6.
Tonotopic maps, obtained from single and multi-unit recordings in the primary and surrounding areas of the auditory cortex, were related to chemoarchitecture of the supratemporal plane, as delineated by immunoreactivity for parvalbumin. Neurons in the central core were sharply tuned and formed two complete tonotopic representations corresponding to the primary auditory area (AI) and the rostral (R) area. High frequencies were represented posteriorly in AI and anteriorly in R, the representation reversing in the anterior part of the core. Neurons in regions of less dense immunostaining previously described as lateral (L) and posteromedial (P-m) fields, showed broader frequency tuning. Two tonotopic representations were found in L: in an anterolateral (AL) field, corresponding to a field previously reported by others, high frequencies were represented anteriorly and low frequencies posteriorly; in a posterolateral field (PL) the trend reversed. There was a further reversal on entering P-m from the high frequency representation in PL and progressively lower frequencies tended to be represented more medially in P-m, but P-m may contain two representations reported by others. Neurons in the previously described anteromedial (A-m) and medial (M) fields of weaker immunostaining, were even more broadly tuned. A tonotopic progression from low frequency representation posteriorly to high frequency representation anteriorly was observed in the medial field. Frequency representation in A-m remains uncertain. No tonotopic representation could be demonstrated with the stimuli used in the zones of very weak parvalbumin immunostaining outside AL, PL, P-m, A-m, and M. The properties of neurons in the core and surrounding zones are likely to reflect inputs from the ventral and dorsal medial geniculate nuclei, respectively. The fields outside the core seem to be the starting points for separate streams of auditory corticocortical connections passing into association cortex.  相似文献   

7.
Presbycusis is a sensory perceptual disorder involving loss of high-pitch hearing and reduced ability to process biologically relevant acoustic signals in noisy environments. The present investigation is part of an ongoing series of studies aimed at discerning the neural bases of presbycusis. The purpose of the present experiment was to delineate the inputs to a functionally characterized region of the dorsomedial inferior colliculus (IC, auditory midbrain) in young, adult CBA mice. Focal, iontophoretic injections of horseradish peroxidase were made in the 18-24 kHz region of dorsomedial IC of the CBA strain following physiological mapping experiments. Serial sections were reacted with diaminobenzidine or tetramethylbenzidine, counterstained and examined for retrogradely labeled cell bodies. Input projections were observed contralaterally from: all three divisions of cochlear nucleus; intermediate and dorsal nuclei of the lateral lemniscus (LL); and the central nucleus, external nucleus and dorsal cortex of the IC. Input projections were observed ipsilaterally from: the medial and lateral superior olivary nuclei; the superior paraolivary nucleus; the dorsolateral and anterolateral periolivary nuclei; the dorsal and ventral divisions of the ventral nucleus of LL; the dorsal and intermediate nuclei of LL; the central nucleus, external nucleus and dorsal cortex of the IC outside the injection site; and small projections from central gray and the medial geniculate body. These findings in young, adult mice with normal hearing can now serve as a baseline for similar experiments being conducted in mice of older ages and with varying degrees of hearing loss to discover neural changes that may cause age-related hearing disorders.  相似文献   

8.
Acetylcholinesterase (AChE) and calbindin D-28K (CaBP) are transiently expressed in the rat auditory nuclei during the early postnatal period. In the ventral division of the medial geniculate body (MGV), the transient AChE expression in the neuropil is replaced by CaBP expression in the neurones. The time correlation between the up- and down-regulations in these neuro-chemicals suggests some switching over mechanism. A lesion of the inferior colliculus (IC) decreases the AChE reactivity in terminal field of the IC-MGV projections. We here demonstrate that the IC lesion results in CaBP expressions in neurones of the MGV before its normal onset. It is thus possible that the transiently expressed AChE plays an important role in the intercellular signal transduction for neurochemical phenotype expressions.  相似文献   

9.
The object of this study was to identify the terminal distributions of thalamocortical axons arising in chemically characterized subdivisions of the medial geniculate complex. Large injections of wheat germ agglutinin-conjugated horseradish peroxidase or small injections of Phaseolus vulgaris leucoagglutinin were made in the medial geniculate complex of Macaca fuscata. The terminal distributions of labeled axons in the cortex were correlated with auditory cortical fields demonstrable by different intensities of immunoreactivity for parvalbumin. Fibers from the ventral nucleus terminated mainly in layer IV and deep portion of layer III (IIIB), with additional terminations in layers I-IIIA and in layer VI. In layers IIIB-IV, a major terminal plexus was formed by a small number of dense patches, 300-500 microns in diameter, surrounded by smaller satellite patches. The patches conformed to a similarly lobulated pattern of parvalbumin fiber immunoreactivity. Terminations of some individually labeled thalamocortical fibers were restricted to a single patch, whereas others innervated more than one patch by collateral branches. Fibers from the dorsal nuclei ending in areas of less dense parvalbumin immunoreactivity surrounding the primary auditory cortex formed much larger terminal patches centered largely in layer IIIB. Fibers from the magnocellular nucleus had relatively few terminal branches but innervated extremely wide areas by collaterals of single axons. Two types of axons arose from the magnocellular nucleus, one terminating preferentially in middle cortical layers and the other exclusively in layer I. These may arise respectively from parvalbumin- and calbindin-immunoreactive cell populations in the magnocellular nucleus.  相似文献   

10.
Ca2+ influx through glutamate receptors (GluRs) is thought to play a crucial part in developmental processes and neuronal plasticity. Here we have examined the spatiotemporal distribution of Ca2+-permeable GluRs in auditory brainstem neurons of the rat from birth to adulthood, using the cobalt-staining technique of Pruss and collaborators. In slices of young adult rats, 1 mM glutamate evoked intense cobalt uptake in subsets of neurons in the ventral cochlear nuclei, the medial nucleus of the trapezoid body, the lateral and the medial superior olive, and the lateral lemniscal nuclei. Neurones in the central nucleus of the inferior colliculus, and thalamic auditory nuclei appear to express few, if any, Ca2+-permeable GluRs. Thus, in adults, Ca2+-permeable GluRs are present in neurons of almost all main relay stations of the auditory brainstem. During development, cobalt-stained cells first appeared at about hearing onset (at postnatal day 12 [P12]). At P16, staining levels were highest and the pattern of distribution was already adult-like. The staining intensity slightly declined during the fourth postnatal week. In contrast, Ca2+-permeable receptors were detected in the external cortex of the inferior colliculus as early as P4. Our results show that auditory neurons, characterized by a high temporal precision in neuronal activity, display Ca2+-permeable GluRs. Because Ca2+ permeability appears at about the onset of hearing and is highest during the following 2 weeks, Ca2+ influx through GluRs is likely to be implicated in remodelling processes occurring during this ontogenetic period.  相似文献   

11.
The thalamic nuclei at the medial border of the medial geniculate body (i.e. the suprageniculate nucleus, the medial division of the medial geniculate nucleus, the posterior intralaminar nucleus and the peripeduncular nucleus) which relay sensory information to the amygdala are thought to receive convergent input from multiple sites. In order to delineate the organization of these multimodal thalamic nuclei, the locations of superior and inferior collicular neurons projecting to these nuclei were studied by means of retrograde transport methods. Small injections of the tracer Miniruby were made into single paralaminar thalamic nuclei. Injections of Miniruby into the suprageniculate nucleus labelled predominantly neurons in the stratum opticum of the superior colliculus, whereas injections into the medial division of the medial geniculate body, the posterior intralaminar nucleus and the peripeduncular nucleus labelled predominantly neurons in the deep layers of the superior colliculus. These injections also labelled neurons in the inferior colliculus. The majority of retrogradely labelled neurons were found in the external nucleus of the inferior colliculus and here predominantly in layer 2. Injections focused onto the medial division of the medial geniculate body additionally labelled magnocellular neurons in layer 3 of the external nucleus and a few neurons in the central nucleus. More ventrally located injections, focused onto the posterior intralaminar and peripeduncular nucleus, almost exclusively labelled neurons in layer 1 of the external nucleus and the dorsal part of the dorsal nucleus. After injections into the suprageniculate nucleus, only neurons in layer 2 were found. Neurons in the central nucleus of the inferior colliculus were only found after injections that involved the medial division of the medial geniculate body. The present results suggest that, despite a considerable degree of convergence in this thalamic region, each of these thalamic nuclei receives a unique pattern of projections from the superior and inferior colliculi. It appears that the thalamic nuclei may be concerned mainly, but not exclusively, with a single sensory modality, and give rise to parallel multimodal and unimodal pathways to the amygdala.  相似文献   

12.
We describe the descending projections from the central nucleus of the inferior colliculus (CNIC) in guinea pig. Focal injections of the tracer biocytin, made in physiologically defined frequency regions of the CNIC, labelled laminated axonal terminal fields in the ipsilateral dorsal nucleus of the lateral lemniscus, and bilaterally in the ventral nucleus of the trapezoid body and the dorsal cochlear nucleus. Labelling was also present in the rostral periolivary nucleus, but we could not distinguish a clear border between the terminal fields in this nucleus and those in the ventral nucleus of the trapezoid body. Labelling observed in the ventral nucleus of the lateral lemniscus, and to a lesser extent in the dorsal nucleus of the lateral lemniscus, was accompanied by retrogradely labelled somata and therefore we cannot conclude unequivocally that the CNIC projects to these lemniscal nuclei. Where the labelling was ordered topographically, its position varied as a function of the best frequency at the injection site. High-frequency regions in the CNIC project to the medial parts of the ventral nucleus of the trapezoid body and dorsal cochlear nucleus, while low-frequency regions in the CNIC project to the lateral parts of the ventral nucleus of the trapezoid body and dorsal cochlear nucleus. Additional axonal labelling with terminal boutons, but with no apparent topographical arrangement, was present in the ipsilateral horizontal cell group, sagulum, and also bilaterally in the superficial granule cell layer of the ventral cochlear nucleus and layer 2 of the dorsal cochlear nucleus. Our findings are consistent with the existence of tonotopically organised feedback projections from the CNIC to the brainstem nuclei that project to it.  相似文献   

13.
CBA/J mice deprived of airborne sound stimulation during postnatal development have smaller globular cells in the ventral cochlear nucleus and smaller neurons in the medial nucleus of the trapezoid body than do normal control mice. The sound deprivation in these mice is similar to that experienced by persons with pure congenital conductive hearing losses. Even more profound central neural changes were found in auditory nuclei in the brain stem of a congenitally sensorineural deaf human.  相似文献   

14.
15.
Evidence from anatomical tracer studies as well as lesions of the primary auditory cortex (AI) indicate that the principal relay nucleus of the auditory thalamus, the ventral part of the medial geniculate (MGv), projects in parallel to AI and the rostral area on the supratemporal plane of the macaque monkey. The caudomedial area, by contrast, receives input from MGv only indirectly via AI, and neurons in this area are often tuned to the spatial location of a complex sound. The belt areas on the lateral surface of the superior temporal gyrus receive input from the primary areas. Neurons in these areas respond better to more complex stimuli, such as band-pass noise pulses of frequency-modulated sweeps, than to pure tones. Often neurons in the lateral belt respond well to species-specific communication calls. The hypothesis is put forward that the central auditory pathways in the macaque monkey are organized into parallel streams, similar to the visual system, one for the processing of spatial information, the other for the processing of auditory "patterns". Evidence from neuroimaging studies in humans with MRI and PET are consistent with this hypothesis. Virtual auditory space stimuli lead to selective activation of an inferior parietal region, whereas speech-like stimuli activate superior temporal regions.  相似文献   

16.
To localize the gene expression of AT2 angiotensin II receptors in rat brain we performed in situ hybridization histochemistry using 35S-labeled antisense riboprobes. The AT2 receptor mRNA expression pattern was compared in consecutive brain sections, from 2 week old rats, with the receptor expression by means of [125I]Sar1-ANG II binding and displacement with AT2 selective ligands followed by autoradiography. Expression of AT2 receptor mRNA was found in several thalamic nuclei (ventral posterolateral, mediodorsal, central medial, paracentral, and paraventricular), the medial geniculate nuclei, the nucleus of the optic tract, the subthalamic nucleus, the interposed nucleus of the cerebellum, and in the inferior olive. In these areas the AT2 receptor gene expression corresponds well with [125I]Sar1-ANG II binding. In addition, AT2 receptor mRNA expression was found in the red nucleus where no [125I]Sar1-ANG II binding was present. No significant hybridization of the AT2 receptor antisense probe was found in septal nuclei, the locus coeruleus, the dorsolateral geniculate nucleus, or the cerebellar cortex, areas rich in [125I]Sar1-ANG II binding. Our results indicate that some brain regions may be involved in AT2 receptor formation, transporting the receptor protein to other brain areas. However, in most structures, both the formation and expression of receptors occur, suggesting the existence of local AT2 receptor circuits, or that of AT2 autoreceptors. Other structures express only the receptor protein, indicating that these AT2 receptors are produced elsewhere. Our present data are the basis for further studies on the clarification of AT2 receptor pathways in the brain.  相似文献   

17.
The effects of excitatory classical conditioning on cytochrome oxidase activity in the central auditory system were investigated using quantitative histochemistry. Rats in the conditioned group were trained with consistent pairings of a compound conditional stimulus (a tone and a light) with a mild footshock, to elicit conditioned suppression of drinking. Rats in the pseudorandom group were exposed to pseudorandom presentations of the same tone, light and shock stimuli without consistent pairings. Untrained rats in a naive group did not receive presentations of the experimental stimuli. The findings demonstrated that auditory fear conditioning modifies the metabolic neuronal responses of the auditory system, supporting the hypothesis that sensory neurons are responsive to behavioural stimulus properties acquired by learning. There was a clear distinction between thalamocortical and lower divisions of the auditory system based on the differences in metabolic activity evoked by classical conditioning, which lead to an overt learned behavioural response versus pseudorandom stimulus presentations, which lead to behavioural habituation. Increases in cytochrome oxidase activity indicated that tone processing is enhanced during associative conditioning at upper auditory structures (medial geniculate nucleus and secondary auditory cortices). In contrast, metabolic activation of lower auditory structures (cochlear nuclei and inferior colliculus) in response to the pseudorandom presentation of the experimental stimuli suggest that these areas may be activated during habituation to tone stimuli. Together these findings show that mapping the metabolic activity of cytochrome oxidase with quantitative histochemistry can be successfully used to map regional long-lasting effects of learning on brain systems.  相似文献   

18.
AMPA receptor specific antibodies were used to study the distribution and development of glutamate receptor subtypes (GluR1-4) in nucleus magnocellularis, angularis, laminaris, and the superior olive of the barn owl. Each nucleus in the adult barn owl expresses characteristic levels of AMPA receptor subtypes, and all are enriched in the subunits associated with rapid desensitization (GluR2 and 4). In the auditory hindbrain of the barn owl, the levels of expression of all AMPA receptors were very low at the time of hatching. In all nuclei, the level of GluR1 immunoreactivity was low to undetectable at all ages studied. In the cochlear nuclei, angularis and magnocellularis, levels of GluR2/3 and GluR4 immunoreactivity increased over the first 2 weeks after hatching, coinciding with the morphological maturation of auditory nerve terminals in NM. In the nucleus laminaris and in the superior olive, GluR2/3 and GluR4 immunoreactivity reached adult-like patterns by 3 weeks after hatching. Thus, adult-like patterns of immunoreactivity appeared at least 1 month before the end of the sensitive period in all nuclei studied.  相似文献   

19.
The present study was conducted to demonstrate immunohistochemically, the sites of c-fos protein expression in the brains of mice subjected to acute and chronic social defeat stress. To induce social stress, mice were placed in situations of species-specific intermale aggression either only once or five times at 24 h intervals. Two hours after the single or fifth defeat stress, many c-fos immunoreactive neurons were observed in a variety of brain regions including the limbic system and sensory relay nuclei. The c-fos immunoreactive neurons in the brains of acute defeat mice decreased in number with time and the c-fos staining pattern of acute defeat mice became indistinguishable from that of normal control mice by 24 h after the single defeat stress. In contrast, chronic defeat stress induced persistent c-fos expression in the forebrain and brainstem even 24 h after the fifth defeat stress. In the forebrain of chronic defeat mice, the olfactory bulb, cingulate cortex, hippocampus, entire hypothalamus, septal nuclei and the amygdaloid complex, except for the central nucleus, were labeled intensely with c-fos antiserum. In the lower brainstem, nerve cells with c-fos immunoreactivity were seen mainly in ascending and descending sensory relay nuclei relevant to auditory and vestibular transmission, epicritic sensation (gracile and external cuneate nuclei), pain inhibition (central gray and raphe nuclei), and viscerosensory transmission (solitary tract nucleus). The differences in c-fos expression among the normal control, acute and chronic defeat mice were evaluated by an enumeration of the immunopositive neurons within each brain nucleus examined, and they were confirmed subsequently by statistical analysis. There was little c-fos expression in the nucleus putamen, lateral, ventral and posterior thalamic nuclei, pretectal nuclei, medial geniculate nucleus, red nucleus, substantia nigra, cerebellum, spinal cord, or cranial nerve nuclei. These findings suggest that chronic but not acute defeat stress causes persistent c-fos expression in more widespread brain regions than do any other stresses so far investigated. The present study may shed light on the central mechanisms by which behavioral abnormalities and/or chronic sociopsychological stress leads to the occurrence of abnormal behavior and/or psychosomatic disorders in experimental animals and humans.  相似文献   

20.
The expression pattern of the human nephroblastoma overexpressed (novH) gene in the fetal human central nervous system was examined by in situ hybridization using digoxigenin-labeled novH-specific riboprobes. In the spinal cord, the nov-expressing neurons were first detected both in the ventral region at 16 weeks of gestation (G16W) and in the dorsal region at G38W. In the medulla, nov-expressing neurons were detected in the principal nucleus of the inferior olive, the hypoglossal nucleus and the dorsal motor nucleus of vagus at G16W. Nov-positive neurons were detected at G28W in the nucleus of the spinal tract of the trigeminal and cuneate nucleus, and at G38W in the abducens nucleus of pons, the red nucleus and the substantia nigra of the midbrain, the ventral posterolateral and the mediodorsal thalamic nucleus. A strong labeling was also detected in the striatum of the cerebrum and the cerebral cortex of the parietal lobe. These data established that novH is mainly expressed in somato-motor neurons in the lower central nervous system at early developmental stages and in the higher central nervous system at later stages, suggesting that nov may play an important role in neuronal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号