首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow boiling heat transfer coefficient, pressure drop, and flow pattern are investigated in the horizontal smooth tube of 6.1 mm inner diameter for CO2, R410A, and R22. Flow boiling heat transfer coefficients are measured at the constant wall temperature conditions, while pressure drop measurement and flow visualization are carried out at adiabatic conditions. This research is performed at evaporation temperatures of −15 and −30 °C, mass flux from 100 to 400 kg m−2 s−1, and heat flux from 5 to 15 kW m−2 for vapor qualities ranging from 0.1 to 0.8. The measured R410A heat transfer coefficients are compared to other published data. The comparison of heat transfer coefficients for CO2, R410A, and R22 is presented at various heat fluxes, mass fluxes, and evaporation temperatures. The difference of coefficients for each refrigerant is explained with the Gungor and Winterton [K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transfer 29 (1986) 351–358] correlation based on the thermophysical properties of refrigerants. The Wattelet et al. [J.P. Wattelet, J.C. Chato, B.R. Christoffersen, J.A. Gaibel, M. Ponchner, P.J. Kenny, R.L. Shimon, T.C. Villaneuva, N.L. Rhines, K.A. Sweeney, D.G. Allen, T.T. Heshberger, Heat Transfer Flow Regimes of Refrigerants in a Horizontal-tube Evaporator, ACRC TR-55, University of Illinois at Urbana-Champaign, 1994], and Gungor and Winterton [K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transfer 29 (1986) 351–358] correlations give the best agreement with the measured heat transfer coefficients for CO2 and R410A. Pressure drop for CO2, R410A, and R22 at various mass fluxes, evaporation temperatures and qualities is presented in this paper. The Müller-Steinhagen and Heck [H. Müller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes, Chem. Eng. Process. 20 (1986) 297–308], and Friedel [L. Friedel, Improved friction pressure correlations for horizontal and vertical two-phase pipe flow, in: The European Two-Phase Flow Group Meeting, Ispra, Italy, 1979 (paper E2)] correlation can predict most of the measured pressure drop within the range of ±30%. The relation between pressure drop and properties for each refrigerant is described by applying the Müller-Steinhagen and Heck correlation. The observed two-phase flow patterns for CO2 and R410A are presented and compared with flow pattern maps. Most of the flow patterns can be determined by the Weisman et al. [J. Weisman, D. Duncan, J. Gibson, T. Crawford, Effect of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines, Int. J. Multiphase Flow 5 (1979) 437–462] flow pattern map.  相似文献   

2.
In this study, nucleate boiling heat transfer coefficients (HTCs) of five flammable refrigerants of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), and dimethylether (RE170) were measured at the liquid temperature of 7 °C on a low fin tube of 1023 fins per meter, Turbo-B, and Thermoexcel-E tubes. All data were taken from 80 to 10 kW m−2 with an interval of 10 kW m−2 in the decreasing order of heat flux. Flammable refrigerants' data showed a typical trend that nucleate boiling HTCs obtained on enhanced tubes also increase with the vapor pressure. Fluids with lower reduced pressure such as DME, isobutene, and butane took more advantage of the heat transfer enhancement mechanism of enhanced tubes than those with higher reduced pressure such as propylene and propane. Finally, Thermoexcel-E showed the highest heat transfer enhancement ratios of 2.3–9.4 among the tubes tested due to its sub-channels and re-entrant cavities.  相似文献   

3.
In this study, external condensation heat transfer coefficients (HTCs) of six flammable refrigerants of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of 39 °C on a plain tube of 19.0 mm outside diameter with a wall subcooling of 3–8 °C under a heat flux of 7–23 kW m−2. Test results showed a typical trend that external condensation HTCs decrease with the wall subcooling. No unusual behavior or phenomenon was observed for these flammable refrigerants during experiments. HFC32 and DME showed 28–44% higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene and butane showed the similar HTCs as those of HCFC22 while propane and isobutane showed 9% lower HTCs than those of HCFC22. Finally, a general correlation was made by modifying Nusselt's equation based upon the measured data of eleven fluids of various vapor pressures including halogenated refrigerants. The general equation showed an excellent agreement with all data exhibiting a deviation of less than 3%.  相似文献   

4.
Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m−2 s−1 and a quality range from approximately 10–80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18° helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile.  相似文献   

5.
The introduction of chlorine-free refrigerants to the market requires experimental investigations of their behaviour in heat pumps and refrigerators. One particular area of interest is the effect of the new oils on the heat transfer in evaporators and condensers. Oil can either increase or decrease the heat transfer coefficient. This paper presents the results from an experimental investigation of the effect of three different ester-based oils on the heat transfer of HFC134a in a horizontal evaporator. The tests were carried out at heat fluxes between 2 and 8 kW m−2 (corresponding to mass fluxes between approximately 40 and 170 kg s−1 m−2). The evaporation temperature was varied from−10 to +10°C. The global oil concentration ranged from 0 to 4.5 mass percentage based on the total liquid flow. The heat transfer coefficient decreased in most of the cases. The results indicate that the decrease seems to depend on the viscosity of the oil. The decrease can fairly well be estimated with the correlation for pure refrigerants by Shah if the viscosity of the mixture is used in the calculations. The data for the oil-contaminated refrigerant also agree well with data for pure refrigerants in a plot of αtplo* versus the inverse Martinelli-Lockhart parameter when αlo* is calculated with a modified Dittus-Boelter correlation and the mixture viscosity is used in the calculations. The heat transfer is found to increase when introducing oil in the special cases where the flow rate is low and the viscosity is low (oil A, 2 and 4 kW m−2 oil B, 6kW m−2 at +10°C). This is most likely due to surface tension effects. It has been suggested that the increased surface tension leads to a better tube wetting and thus an increased heat transfer.  相似文献   

6.
In this study, external condensation heat transfer coefficients (HTCs) are measured for nonazeotropic refrigerant mixtures (NARMs) of HFC32/HFC134a and HFC134a/HCFC123 on a low fin and Turbo-C tubes. All measurements are taken at the vapor temperature of 39 °C with the wall subcooling of 3–8 °C. Test results showed that condensation HTCs of NARMs on enhanced tubes were severely degraded from the ideal values showing up to 96% decrease. HTCs of the mixtures on Turbo-C tube were degraded more than those on low fin tube such that HTCs of the mixtures at the same composition were similar regardless of the tube. The mixture with larger gliding temperature differences (GTDs), HFC134a/HCFC123, showed a larger heat transfer reduction from the ideal values than the mixture with smaller GTDs, HFC32/HFC134a. Heat transfer enhancement ratios of the enhanced tubes with NARMs were almost 2 times lower than those with pure refrigerants and they decreased more as the GTDs of the mixtures increased.  相似文献   

7.
Carbon dioxide among natural refrigerants has gained a considerable attention as an alternative refrigerant due to its excellent thermophysical properties. In-tube evaporation heat transfer characteristics of carbon dioxide were experimentally investigated and analyzed as a function of evaporating temperature, mass flux, heat flux and tube geometry. Heat transfer coefficient data during evaporation process of carbon dioxide were measured for 5 m long smooth and micro-fin tubes with outer diameters of 5 and 9.52 mm. The tests were conducted at mass fluxes of from 212 to 656 kg m−2 s−1, saturation temperatures of from 0 to 20 °C and heat fluxes of from 6 to 20 kW m−2. The difference of heat transfer characteristics between smooth and micro-fin tubes and the effect of mass flux, heat flux, and evaporation temperature on enhancement factor (EF) and penalty factor (PF) were presented. Average evaporation heat transfer coefficients for a micro-fin tube were approximately 150–200% for 9.52 mm OD tube and 170–210% for 5 mm OD tube higher than those for the smooth tube at the same test conditions. The effect of pressure drop expressed by measured penalty factor of 1.2–1.35 was smaller than that of heat transfer enhancement.  相似文献   

8.
Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A inside horizontal plain and microfin tubes of 9.52 mm outside diameter and 1 m length were measured at the condensation temperature of 40 °C with mass fluxes of 100, 200, and 300 kg m−2 s−1 and a heat flux of 7.7–7.9 kW m−2. For a plain tube, HTCs of R134a and R410A were similar to those of R22 while HTCs of R407C are 11–15% lower than those of R22. For a microfin tube, HTCs of R134a were similar to those of R22 while HTCs of R407C and R410A were 23–53% and 10–21% lower than those of R22. For a plain tube, our correlation agreed well with the present data for all refrigerants exhibiting a mean deviation of 11.6%. Finally, HTCs of a microfin tube were 2–3 times higher than those of a plain tube and the heat transfer enhancement factor decreased as the mass flux increased for all refrigerants tested.  相似文献   

9.
Experimental heat transfer coefficients are reported for HFC-134a and CFC-12 during in-tube single-phase flow, evaporation and condensation. These heat transfer coefficients were measured in a horizontal, smooth tube with an inner diameter of 8.0 mm and a length of 3.67 m. The refrigerant in the test-tube was heated or cooled by using water flowing through an annulus surrounding the tube. Evaporation tests were performed for a refrigerant temperature range of 5–15°C with inlet and exit qualities of 10 and 90%, respectively. For condensation tests, the refrigerant temperature ranged from 30 to 50°C, with et and exit qualities of 90 and 10%, respectively. The mass flux was varied from 125 to 400 kg m−2 s−1 for all tests. For similar mass fluxes, the evaporation and condensation heat transfer coefficients for HFC-134a were significantly higher than those of CFC-12. Specifically, HFC-134a showed a 35–45% increase over CFC-12 for evaporation and a 25–35% increase over CFC-12 for condensation.  相似文献   

10.
Nuclate pool boiling heat transfer coefficients (HTCs) of HCFC123, CFC11, HCFC142b, HFC134a, CFC12, HCFC22, HFC125 and HFC32 on a horizontal smooth tube of 19.0 mm outside diameter have been measured. The experimental apparatus was specially designed to accomodate high vapor pressure refrigerants such as HFC32 and HFC125 with a sight glass. A cartridge heater was used to generate uniform heat flux on the tube. Data were taken in the order of decreasing heat flux from 80 to 10 kW m−2 with an interval of 10 kW m−2 in the pool of 7 °C. Test results showed that HTCs of HFC125 and HFC32 were 50–70% higher than those of HCFC22 while HTCs of HCFC123 and HFC134a were similar to those of CFC11 and CFC12 respectively. It was also found that nucleate boiling heat transfer correlations available in the literature were not good for certain alternative refrigerants such as HFC32 and HCFC142b. Hence, a new correlation was developed by a regression analysis taking into account the variation of the exponent to the heat flux term as a function of reduced pressure and some other properties. The new correlation showed a good agreement with all measured data including those of new refrigerants of significantly varying vapor pressures with a mean deviation of less than 7%.  相似文献   

11.
Flow pattern and heat transfer during evaporation in a 10.7 mm diameter smooth tube and a micro-fin tube are presented. The tubes were tested in the ranges of mass flux between 163 and 408 kg m−2 s−1, and heat flux between 2200 and 56 000 W m−2. The evaporation temperature was 6 °C. Flow maps for both the tubes are plotted in the coordinates of mass flux and vapor quality. The relations of flow pattern and local heat transfer coefficient are discussed. The heat transfer coefficients for intermittent and annular flows in both the smooth tube and the micro-fin tube are shown to agree well with Gungor and Winterton's correlation with modified constants.  相似文献   

12.
In this study, nucleate boiling heat transfer coefficients (HTCs) of HCFC22, HFC134a, HFC125, HFC32 were measured on a low fin, Turbo-B, and Thermoexcel-E tubes. All data were taken at the liquid pool temperature of 7 °C on horizontal tubes of 152 mm length and 18.6–18.8 mm outside diameter at heat fluxes of 10–80 kW m−2 with an interval of 10 kW m−2 in the decreasing order of heat flux. For a plain and low fin tubes, refrigerants with higher vapor pressures showed higher nucleate boiling HTCs consistently. This was due to the fact that the wall superheat required to activate given size cavities became smaller as pressure increased. For Turbo-B and Thermoexcel-E tubes, HFC125 showed a peculiar behavior exhibiting much reduced HTCs due to its high reduced pressure. The heat transfer enhancement ratios of the low fin, Turbo-B, and Thermoexcel-E tubes were 1.09–1.68, 1.77–5.41, 1.64–8.77 respectively in the range of heat fluxes tested.  相似文献   

13.
Flow condensation heat transfer coefficients (HTCs) of R12, R22, R32, R123, R125, R134a, and R142b were measured experimentally on a horizontal plain tube. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water-glycol loop. The test section in the refrigerant loop was made of a copper tube with an outside diameter of 9.52 mm and 1 m length. The refrigerant was cooled by cold water passing through an annulus surrounding the test section. All tests were performed at a fixed refrigerant saturation temperature of 40 °C with mass fluxes of 100, 200, 300 kg m−2 s−1 and heat flux of 7.3–7.7 kW m−2. Experimental results showed that flow condensation HTCs increase as the quality and mass flux increase. At the same mass flux, the HTCs of R142b and R32 are higher than those of R22 by 8–34% while HTCs of R134a and R123 are similar to those of R22. On the other hand, HTCs of R12 and R125 are lower than those of R22 by 24–30%. Previous correlations predicted the present data satisfactorily with mean deviations of less than 20% substantiating indirectly the reliability of the present data. Finally, a new correlation was developed by modifying Dobson and Chato's correlation with an introduction of a heat and mass flux ratio combined with latent heat of condensation. The correlation showed a mean deviation of 10.7% for all pure halogenated refrigerants' data obtained in this study.  相似文献   

14.
Experiments on flow condensation have been conducted with both pure R32, R134a and their mixtures inside a tube (10 m long, 6 mm ID), with a mass flux of 131–369 kg m−2s−1 and average condensation temperature of 23–40°C. The experimental heat transfer coefficients are compared with those predicted from correlations. The maximum mean heat transfer coefficient reduction (from a linear interpolation of the single component values) occurs at a concentration of roughly 30% R32 for the same mass flux basis, and is approximately 20% at Gr = 190 kg m−2s−1, 16% at Gr = 300 kg m−2s−1. Non-ideal properties of the mixture have a certain, but relatively small, influence on the degradation. Among others, temperature and concentration gradients, slip, etc. are also causes of heat transfer degradation.  相似文献   

15.
Convective boiling heat transfer experiments were performed in horizontal minichannels with binary mixture refrigerant, R-410A. The test section is made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm, respectively, and is uniformly heated by applying electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 10–30 kW m−2, a mass flux range of 300–600 kg m−2 s−1, and quality ranges of up to 1.0. The experimental results were mapped on Wang et al.'s (C.C. Wang, C.S. Chiang, D.C. Lu, Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube, Experimental, Thermal and Fluid Science 15 (1997) 395–405) and Wojtan et al.'s (L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I – a new diabatic two-phase flow pattern map, International Journal of Heat and Mass Transfer 48 (2005) 2955–2969) flow pattern maps to observe the flow regimes. Laminar flow appears in flow with minichannels. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A was developed with 11.20% mean deviation; it showed a good agreement between the measured data and the calculated heat transfer coefficients.  相似文献   

16.
This paper presents a study of flow regimes, pressure drops, and heat transfer coefficients during refrigerant condensation inside a smooth, an 18° helical micro-fin, and a herringbone tubes. Experimental work was conducted for condensing refrigerants R-22, R-407C, and R-134a at an average saturation temperature of 40 °C with mass fluxes ranging from 400 to 800 kg m−2 s−1, and with vapour qualities ranging from 0.85 to 0.95 at condenser inlet and from 0.05 to 0.15 at condenser outlet. These test conditions represent annular and intermittent (slug and plug) flow conditions. Results showed that transition from annular flow to intermittent flow, on average for the three refrigerants, occurred at a vapour quality of 0.49 for the smooth tube, 0.29 for the helical micro-fin tube, and 0.26 for the herringbone tube. These transition vapour qualities were also reflected in the pressure gradients, with the herringbone tube having the highest pressure gradient. The pressure gradients encountered in the herringbone tube were about 79% higher than that of the smooth tube and about 27% higher than that of the helical micro-fin tube. A widely used pressure drop correlation for condensation in helical micro-fin tubes was modified for the case of the herringbone tube. The modified correlation predicted the data within a 1% error with an absolute deviation of 7%. Heat transfer enhancement factors for the herringbone tube against the smooth tube were on average 70% higher while against the helical micro-fin tube it was 40% higher. A correlation for predicting heat transfer coefficients inside a helical micro-fin tube was modified for the herringbone tube. On average the correlation predicted the data to within 4% with an average standard deviation of 8%.  相似文献   

17.
Experiments were performed on the convective boiling heat transfer in horizontal minichannels with CO2. The test section is made of stainless steel tubes with inner diameters of 1.5 and 3.0 mm and with lengths of 2000 and 3000 mm, respectively, and it is uniformly heated by applying an electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 20–40 kW m−2, a mass flux range of 200–600 kg m−2 s−1, saturation temperatures of 10, 0, −5, and −10 °C and quality ranges of up to 1.0. Nucleate boiling heat transfer contribution was predominant, especially at low quality region. The reduction of heat transfer coefficient occurred at a lower vapor quality with a rise of heat flux, mass flux and saturation temperature, and with a smaller inner tube diameter. The experimental heat transfer coefficient of CO2 is about three times higher than that of R-134a. Laminar flow appears in the minichannel flows. A new boiling heat transfer coefficient correlation that is based on the superposition model for CO2 was developed with 8.41% mean deviation.  相似文献   

18.
In this study, the performance of a small-capacity directly cooled refrigerator was evaluated by using the mixture of R290 and R600a with mass fraction of 55:45 as an alternative to R134a. The compressor displacement volume of the alternative system with R290/R600a (55/45) was modified from that of the original system with R134a to match the refrigeration capacity. Both systems with R290/R600a (55/45) and R134a were tested, and then optimized by varying the refrigerant charge and capillary tube length under experimental conditions for both the pull-down test and the power consumption test. The refrigerant charge of the optimized R290/R600a system was approximately 50% of that of the optimized R134a system. The capillary tube lengths for each evaporator in the optimized R290/R600a system were 500 mm longer than those in the optimized R134a system. The power consumption of the optimized R134a system was 12.3% higher than that of the optimized R290/R600a system. The cooling speed of the optimized R290/R600a (55/45) system at the in-case setting temperature of −15 °C was improved by 28.8% over that of the optimized R134a system.  相似文献   

19.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

20.
Carbon dioxide among natural refrigerants has gained considerable attention as an alternative refrigerant due to its excellent thermophysical properties. In this study, transcritical refrigeration cycle using carbon dioxide is of great interest, and the evaporation process is investigated by experiment and analysis. This paper presents the measured heat transfer coefficients and pressure drop during evaporation process of carbon dioxide in a horizontal smooth tube. The test section was made of a seamless stainless steel tube with the inner diameter of 7.53 mm, and length of 5 m. Heat is provided by a direct heating method to the test section. Experiments were conducted at saturation temperatures of −4 to 20 °C, heat fluxes of 12 to 20 kWm−2 and mass fluxes of 200 to 530 kgm−2 s−1. A comparison of different heat transfer correlations applicable to evaporation of carbon dioxide has been made. Based on the experiments for the evaporation heat transfer, useful correlation is developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号