首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The myenteric plexus was investigated in the gastrointestinal tract of pre-diabetic and diabetic non-obese diabetic (NOD) mice. The plexus was immunostained by the avidin-biotin complex method, using a general marker for nerve elements, namely protein gene-product 9.5. The nerve fibres were quantified by point-counting and the number of ganglia and their area were determined by image analysis. The relative volume density of the nerve fibres in duodenal muscularis propria was found to be significantly reduced in of both pre-diabetic and diabetic NOD mice. There was no statistical difference between controls and NOD mice regarding relative volume density of nerve fibres in antral and colonic muscularis propria. The number of myenteric ganglia/mm baseline was significantly decreased in the duodenum of diabetic NOD mice, and showed a non-statistically significant tendency to decrease in pre-diabetic mice. In the antrum and colon, there was no difference between the controls and NOD mice regarding the number of ganglia/mm baseline. Nor was there any significant difference between controls and NOD mice in the area of myenteric ganglia in either antrum, duodenum or colon. It is concluded that the changes in the duodenal myenteric plexus of NOD mice are prior to the onset of diabetes. It is suggested that the absence of changes in the antral and colonic myenteric plexus when using a general marker for neuroelements does not preclude a possible change in cholinergic, adrenergic or peptidergic innervation.  相似文献   

2.
Non-obese diabetic (NOD) mice spontaneously develop T-cell-mediated autoimmune diabetes. Initial work on the diabetogenic T-cell repertoire indicated that autoreactive T lymphocytes were polyclonal but that the presence of specific subsets (V beta 8 or V beta 6) might be required for induction of the disease. Further functional analysis of NOD mice T lymphocytes was limited because of the relative anergic state of these cells due to abnormal patterns of cytokine secretion. The purpose of the present study was to establish experimental conditions allowing the exploration of the functional features of minor T-lymphocyte subsets in vitro using low doses of cofactors. The ability of splenocytes to proliferate, respond to, or secrete interleukin-2 and interleukin-4 was explored in young, pre-diabetic or old non-diabetic female NOD mice. No significant bias in T-cell receptor usage was noted in the spleen of these animals, whereas V beta 6 + lymphocytes could be very efficiently stimulated by interleukin-4 and also produce low but detectable amounts of interleukin-4 during the pre-diabetic period in female NOD mice. These results suggest that diabetes induction is preceded by V beta + subset-specific functional changes in the ability of various T cells to respond to or secrete interleukin-2 and interleukin-4, indicating a functional imbalance of the T-cell repertoire expanded by the autoimmune process.  相似文献   

3.
Colonic endocrine cells from prediabetic and diabetic non-obese diabetic mice as well as of the sister strain, BALB/cJ, were investigated by immunocytochemistry and computer image analysis. In prediabetic mice, enteroglucagon-and serotonin-immunoreactive cells were significantly increased in number, whereas the cell secretory index of these two cell types was significantly reduced. No significant differences were found in numbers or cell secretory index of peptide YY (PYY)-immunoreactive cells. In diabetic mice, PYY-immunoreactive cells were significantly fewer, but there were no significant differences in the numbers of enteroglucagon-and serotonin-immunoreactive cells. Whereas the cell secretory index was reduced in serotonin-producing cells, no significant differences were found between diabetic and control mice regarding the cell secretory index of PYY- and enteroglucagon-immunoreactive cells. Nor was any statistically significant difference found between controls, prediabetic and diabetic non-obese diabetic mice, regarding the thickness of submucosa, of circular and longitudinal-muscle layers, or of the mucosal area/microm baseline. The present study showed that abnormalities in colonic endocrine cells do occur, in both prediabetic and diabetic mice, but they are different in nature and can be divided into primary and secondary to the diabetes onset. The present findings of abnormal colonic endocrine cells in non-obese diabetic mice, an animal model for human insulin-dependent diabetes mellitus, might help explain the gastrointestinal disorders observed in patients with diabetes. The study also showed that the change in the colonic endocrine cells is dynamic and started before the onset of the diabetic condition.  相似文献   

4.
An antiserum, raised in rabbits, against substance P was used in an immunohistochemical investigation of the bovine pineal gland. A moderate innervation of all parts of the bovine pineal gland with substance P-immunoreactive nerve fibers was demonstrated. The immunoreactive nerve fibers were located throughout the pineal gland, both perivascularly, intraparenchymally, and with few fibers in the pineal capsule. Within the habenular nucleus, a large number of substance substance P-immunoreactive perikarya were present. From these perikarya processes extended towards the pineal stalk and gland. Some substance P-immunoreactive nerve fibers were located in the stria medullaris and in the posterior commissure. The anatomical location of the substance P-immunoreactive nerve fibers in the pineal gland and stalk strongly indicates that, in this species, substance P-immunoreactive pinealopetal nerve fibers originate from perikarya in the brain, probably from the medial habenular nucleus.  相似文献   

5.
The relationship between substance P-containing axons and sympathetic preganglionic neurons possessing the neurokinin-1 receptor was investigated in the lateral horn of the rat thoracic spinal cord. Sympathetic preganglionic neurons were labelled retrogradely with Fluorogold. Sections containing labelled cells were reacted with antibodies against choline acetyltransferase, substance P and the neurokinin-1 receptor and examined with three-colour confocal laser scanning microscopy. In all, 95 sympathetic preganglionic neurons were examined and 79% of these were immunoreactive for the neurokinin-1 receptor. Substance P-immunoreactive axons not only made contacts with preganglionic neurons which were immunoreactive for the receptor but also made contacts with cells which did not express the receptor. Dendrites, labelled with immunoreactivity for choline actyltransferase, also received contacts from substance P-immunoreactive varicosities but this was not related to the presence or the absence of receptor. An electron microscopic analysis was performed to investigate the relationship between substance P-containing boutons and dendrites possessing the neurokinin-1 receptor. Immunoreactivity for substance P was detected with peroxidase immunocytochemistry and immunoreactivity for the receptor was detected with the silver-intensified gold method. Substance P-containing boutons made synapses with dendrites which were positively and negatively labelled for the receptor. Receptor immunoreactivity was not usually present at synapses formed by substance P boutons with neurokinin-1-immunoreactive dendrites. It is concluded that substance P may modulate much of the activity of sympathetic preganglionic neurons through an indirect non-synaptic mechanism.  相似文献   

6.
B7-1 transgene expression on the pancreatic islets in nonobese diabetic (NOD) mice leads to accelerated diabetes, with >50% of animals developing diabetes before 12 wk of age. The expression of B7-1 directly on the pancreatic beta cells, which do not normally express costimulator molecules, converts the cells into effective antigen-presenting cells leading to an intensified autoimmune attack. The pancreatic islet infiltrate in diabetic mice consists of CD8 T cells, CD4 T cells, and B cells, similar to diabetic nontransgenic NOD mice. To elucidate the relative importance of each of the subsets of cells, the NOD-rat insulin promoter (RIP)-B7-1 animals were crossed with NOD.beta2microglobulin -/- mice which lack major histocompatibility complex class I molecules and are deficient in peripheral CD8 T cells, NOD.CD4 -/- mice which lack T cells expressing CD4, and NOD.muMT -/- mice which lack B220-positive B cells. These experiments showed that both CD4 and CD8 T cells were necessary for the accelerated onset of diabetes, but that B cells, which are needed for diabetes to occur in normal NOD mice, are not required. It is possible that B lymphocytes play an important role in the provision of costimulation in NOD mice which is unnecessary in the NOD-RIP-B7-1 transgenic mice.  相似文献   

7.
Nonobese diabetic (NOD) mice spontaneously develop insulin dependent diabetes mellitus. The disease results from an autoimmune process which involves mononuclear cells surrounding and eventually infiltrating the pancreatic islets of Langerhans. Macrophages are thought to be the first cells to infiltrate the islets and are actively involved in the disease process because diabetes is prevented if host macrophages are depleted or inactivated. Several lines of evidence also suggest that NOD macrophages are phenotypically and functionally abnormal. In this study, allogeneic (CBA) macrophages derived from the thymus were inoculated into newborn NOD mice and these were followed for more than 250 days. Spontaneous diabetes was significantly reduced in female NOD mice (6% diabetic versus 45% of controls). Insulitis was also significantly reduced in both male and female mice compared to their control counterparts, and in most cases there were virtually no inflammatory cells in the pancreas. Allogeneic skin grafting and mixed leukocyte cultures indicated that the recipients were not tolerant of donor antigens, and donor-derived cells were not detected in the lymphoid tissues by either flow cytometry or immunohistochemistry. The results show that macrophages from diabetes-resistant donors will prevent insulitis and diabetes in most recipients, however, the mechanism for the protection is unclear, but does not appear to be due to long-term tolerance induction.  相似文献   

8.
Non-obese diabetic (NOD) mice were injected with a rat monoclonal antibody to CD4 from birth every two weeks through 6 months of age. These animals gained weight normally but < 11% of their spleen T cells were CD4+, compared with 28% of CD4+ in controls injected with polyclonal rat IgG. The reduction in CD4 cell percentage was associated with a reduction in the number of cells in the thymus and spleen following the injection. CD4+ cells which survived the injections were nevertheless able to enter cell cycle when stimulated by Con A. None of the CD4-treated NOD mice became diabetic by 6 months of age and none of the animals studied histologically at this time had insulitis. At 9 months of age (three months after stopping the CD4 injections) the mice made antibody to human IgG. At 1 year of age most of the male mice had insulitis, although none of the male or female mice had become spontaneously diabetic. Two thirds of animals injected with cyclophosphamide at 16 months became diabetic within 3 weeks. The results confirm that treatment with CD4 antibody in the first 6 months suffices to reduce the incidence of diabetes in NOD mice. The treatment does not prevent the subsequent development of insulitis in injected mice and does not prevent the accumulation of cells capable of causing overt diabetes after cyclophosphamide injection.  相似文献   

9.
Exogenous insulin may prevent the auto-immunity of diabetes in rodents. We studied the preventive effect of a safe endogenous insulin delivery in the diabetes-prone NOD mouse by immuno-protected human insulinoma grafts. Perm-selective macrocapsules seeded with human insulinoma were implanted in 34 young NOD mice, 4 and 8 weeks old. The animals were observed 18 months and compared to 34 NOD mice grafted with empty fibers and 25 simply observed. Before grafting, the capacity of the macrocapsules to release insulin was assessed in vitro by perifusion studies and by implantation to 12 diabetic NOD mice. At perifusion, the insulin release of the macrocapsules responded to step changes in glucose. During the in vivo study, the capsules reduced the glycemia of diabetic mice from 18+/-3.5 to 7.3+/-2.1 mmol/L. In the study groups, the survival rate without diabetes (50-70%) was statistically different from controls (10-20%). Recipient's splenocytes transplanted to irradiated male NOD mice transferred the autoimmunity in 75-83% of grafted mice and 86-100% of controls. Insulitis was persistent in all, although milder in the grafted mice. Encapsulated insulinoma prevents diabetes in the NOD mouse without abolishing the auto-immunity. The quantity and quality of the tissues needed and the best moment to graft them have to be determined. The prevention of diabetes by encapsulated pancreatic tissue is appealing because of its simplicity and safety.  相似文献   

10.
The present study demonstrated that a short-term administration of mAbs against leukocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) at critical periods resulted in complete protection of autoimmune diabetes in non-obese diabetic (NOD) mice. When these mAbs were administered for only 6 days at 2 wk of age, neither diabetes nor insulitis was observed at 30 wk of age. It appears that the tolerance against beta cell Ag(s) was induced by this transient blockade of the LFA-1/ICAM-1 pathway. Protective suppressor activity was not enough to prevent diabetes because co-transfer of splenocytes from female NOD mice, which had received these mAbs at 2 wk of age, resulted in only a short delay of the diabetic onset caused by adoptive transfer of splenocytes from acutely diabetic NOD mice. Transfer of these splenocytes to young NOD mice could not also abrogate the spontaneous diabetes and insulitis. Furthermore, cyclophosphamide treatment could not abrogate the protection. When splenocytes from the treated NOD mice were transferred to NOD-SCID mice, none of the recipient mice developed significant insulitis and subsequent overt diabetes, suggesting the absence or the inactivation of diabetogenic effector T cells. However, splenic T cells from the insulitis-free NOD mice that had received the mAb treatment preserved proliferative responses to both islet cells and 65-kDa glutamic acid decarboxylase (GAD65) in vitro. These results suggest that a unique peripheral tolerance was induced by the transient blockade of the LFA-1/ICAM-1 pathway in an early age of NOD mice.  相似文献   

11.
Substance P plays an important role in nociceptive processing in the spinal cord. Substance P is also present in several supraspinal regions, such as the pontine parabrachial nucleus, a major relay for autonomic regulation. In this study we examined in the cat with an immunogold method the presence of substance P-like immunoreactivity in spinoparabrachial terminals that were labelled by anterograde transport of unconjugated and lectin-conjugated horseradish peroxidase. We found that dense core vesicles in anterogradely labelled terminals were substance P-immunoreactive. Taken together with previous observations that noxious stimuli increase preprotachykinin expression in ascending nociceptive pathways from the spinal dorsal horn, the present finding provides evidence that substance P is involved in nociceptive processing also in the brain stem.  相似文献   

12.
Glutamic acid decarboxylase (GAD), among other potential autoantigens, is thought to play a crucial role in type I diabetes, particularly in a spontaneous model of the disease, the nonobese diabetic (NOD) mouse. In the pancreas, the presence of GAD and gamma-aminobutyric acid (GABA), the decarboxylation product of GAD and a putative neurotransmitter in the islets of Langerhans, is well documented in the beta-cells. This is particularly true in rats, in which another GABAergic structure exists near the islets, the neuronal bodies. In this study, first the GABA content was measured in isolated islets from NOD and C57BL/6 mice (controls), and a decrease was found in NOD females as their insulitis progressed. Second, for the first time in mice, confocal analysis of immunofluorescent-labeled pancreatic sections revealed near the islets neuronal structures in which GAD and neuropeptide Y were colocalized, as they are in the brain. These structures were always observed in the pancreata of both sexes of C57BL/6 mice at the various ages investigated. In NOD mice, however, these neuronal structures were only detected in young females ( < 10 weeks old) and in males until an intermediate age. Moreover, patches of T cells surrounding GAD-containing fibers were seen in the vicinity of the islets with incipient periinsulitis.  相似文献   

13.
BACKGROUND: We and others have reported previously that the immunosuppressant, leflunomide (Lef), can prevent allogeneic and xenogeneic islet graft rejection in streptozocin (STZ)-induced diabetic animals. However, whether Lef required to prevent islet graft rejection is sufficient to prevent the recurrence of autoimmune diabetes has not been addressed. METHODS: The effect of Lef on concordant xenogeneic islet graft in STZ-induced diabetic mice and autoimmune nonobese diabetic (NOD) mice were studied. Then, whether Lef prevents the onset of spontaneous diabetes in young NOD mice and the recurrence of diabetes after major histocompatibility complex (MHC)-matched islet transplantation in diabetic NOD mice were investigated. RESULTS: In STZ-induced diabetic BALB/c mice, Lef treatment significantly prolonged rat islet graft survival. However, Lef could not significantly prolong rat islet graft survival in autoimmune diabetic NOD mice. For prevention studies, treatment with Lef at 30 mg/ kg/day from 4 weeks to 20 weeks of age significantly reduced the incidence of spontaneous diabetes in NOD mice. However, when the NOD mice were treated from 8 to 24 weeks of age, the incidence of spontaneous diabetes was not significantly reduced as compared to the incidence of diabetes in the untreated female NOD mice at 28 weeks of age. Finally, in the MHC-matched islet transplant model, Lef could not significantly prolong MHC-matched nonobese diabetes-resistant mice islet graft survival in NOD mice. CONCLUSIONS: Lef preventing concordant xenogeneic islet graft rejection is not sufficient to prevent the recurrence of autoimmune diabetes in NOD mice. We believe that controlling autoimmunity after islet transplantation will lead the way to promote successful clinical islet transplantation in the future.  相似文献   

14.
To determine whether the genetic background of the insulin-producing beta cells of the pancreas contributes to autoimmune diabetes susceptibility, we have used a model of the disease based on transferring spleen cells from nonobese diabetic (NOD) <--> C57BL/6 (B6) embryo aggregation (EA) chimeras into B6 and NOD irradiated mice. Insulitis and diabetes could be induced into both B6 and NOD hosts, albeit with low incidence. Cyclophosphamide (CY) treatment, known to accelerate diabetes in prediabetic NOD mice, was found to increase diabetes incidence up to 50-60% in both B6 and NOD mice reconstituted with chimeric splenocytes, while diabetes did not occur in CY-treated B6 mice reconstituted with B6 splenocytes. We conclude that the genetic make-up of the target organ does not affect the final stage of the pathogenesis of insulin-dependent diabetes mellitus.  相似文献   

15.
The NOD mouse is an animal model of IDDM that shows many of the characteristics of human IDDM. It has been proposed that beta-cell destruction in IDDM progresses over time in a linear manner. Recently, we and others have demonstrated that T helper type 1 (Th1) cells have pathogenic roles in the NOD model and proposed that cytokine balances change as the disease progresses. However, it has not been demonstrated how or when the cytokine balances change or how the beta-cell destruction progresses. We have recently demonstrated that the cytokine profiles of CD45RB(low) CD4+ cells correlate either with their pathogenic or with their protective roles in the NOD mouse. To further analyze this apparent correlation between the shift in cytokine level and IDDM, we examined the anti-CD3-induced cytokine profiles of this subset from NOD mice of various ages compared with that from age-matched I-Ak transgenic NOD and BALB/c mice as controls. A significantly higher ratio of anti-CD3-induced interferon-gamma/interleukin-4 was found in diabetic NOD mice (P < 0.0001) but not in age-matched nondiabetic NOD mice. This cytokine ratio did not change significantly until the onset of diabetes in NOD mice. Based upon these results, we propose that IDDM in the NOD mouse progresses as a predominant inflammatory beta-cell dysfunction without actual beta-cell destruction until late in the disease process. This supports the possibility that late-stage immunotherapy may preserve islet beta-cell mass.  相似文献   

16.
Lately, TNF alpha has been the focus of studies of autoimmunity; its role in the progression of autoimmune diabetes is, however, still unclear. To analyze the effects of TNF alpha in insulin-dependent diabetes mellitus (IDDM), we have generated nonobese diabetic (NOD) transgenic mice expressing TNF alpha under the control of the rat insulin II promoter (RIP). In transgenic mice, TNF alpha expression on the islets resulted in massive insulitis, composed of CD4+ T cells, CD8+ T cells, and B cells. Despite infiltration of considerable number of lymphoid cells in islets, expression of TNF alpha protected NOD mice from IDDM. To determine the mechanism of TNF alpha action, splenic cells from control NOD and RIP-TNF alpha mice were adoptively transferred to NOD-SCID recipients. In contrast to the induction of diabetes by splenic cells from control NOD mice, splenic cells from RIP-TNF alpha transgenic mice did not induce diabetes in NOD-SCID recipients. Diabetes was induced however, in the RIP-TNF alpha transgenic mice when CD8+ diabetogenic cloned T cells or splenic cells from diabetic NOD mice were adoptively transferred to these mice. Furthermore, expression of TNF alpha in islets also downregulated splenic cell responses to autoantigens. These data establish a mechanism of TNF alpha action and provide evidence that local expression of TNF alpha protects NOD mice from autoimmune diabetes by preventing the development of autoreactive islet-specific T cells.  相似文献   

17.
Oral administration of porcine insulin has been shown to be effective in preventing the spontaneous occurrence of diabetes in the Non-Obese Diabetic (NOD) mouse model. In the present study, we demonstrate that feeding 6-week-old female mice with 20 units of human insulin every 2-3 days for 30 days induces an active mechanism of suppression through the generation of regulatory T cells. Adult irradiated NOD males i.v. injected with 5 x 10(6) T cells from the spleens of diabetic female donors and the same number of T cells from the spleens of insulin-fed animals had less successful diabetes transfer than controls (4/15 vs. 8/16, P < 0.001). Protection from clinical diabetes was associated with a reduction in severe insulitis (16.4 +/- 3.6% vs. 52.3 +/- 12.8%, P = 0.023). However, more than 85% of the islets were inflamed. Feeding animals for 15 days reduced the magnitude of this protection since the number of successful transfers after 1 month was comparable (12/17 vs. 14/17) despite a significant delay in diabetes onset (P < 0.001). No difference in the contribution of T cell subsets was noted by cytofluorometry in the spleens of treated animals. When T cell subsets from insulin-fed animals were co-injected with diabetogenic T cells, only purified CD4+ T cells were able to transfer protection since only 3/12 mice became diabetic after 36 days in comparison to 3/6 in the group co-injected with CD4+ T cells from PBS-fed animals, or 5/6 in the group injected with CD8+ T cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have generated transgenic nonobese diabetic (NOD) mice expressing dominant negative mutant IFN-gamma receptors on pancreatic beta cells to investigate whether the direct effects of IFN-gamma on beta cells contribute to autoimmune diabetes. We have also quantitated by flow cytometry the rise in class I MHC on beta cells of NOD mice with increasing age and degree of islet inflammatory infiltrate. Class I MHC expression increases gradually with age in wild-type NOD mice; however, no such increase is observed in the transgenic beta cells. The transgenic mice develop diabetes at a similar rate to that of wild-type animals. This study dissociates class I MHC upregulation from progression to diabetes, shows that the rise in class I MHC is due to local IFN-gamma action, and eliminates beta cells as the targets of IFN-gamma in autoimmune diabetes.  相似文献   

19.
The NOD (nonobese diabetic) mouse has been studied as an animal model for autoimmune insulin-dependent diabetes and Sj?gren's syndrome. NOD.Igmu null mice, which lack functional B lymphocytes, develop progressive histopathologic lesions of the submandibular and lachrymal glands similar to NOD mice, but in the absence of autoimmune insulitis and diabetes. Despite the focal appearance of T cells in salivary and lachrymal tissues, NOD.Igmu null mice fail to lose secretory function as determined by stimulation of the muscarinic/cholinergic receptor by the agonist pilocarpine, suggesting a role for B cell autoantibodies in mediating exocrine dryness. Infusion of purified serum IgG or F(ab')2 fragments from parental NOD mice or human primary Sj?gren's syndrome patients, but not serum IgG from healthy controls, alters stimulated saliva production, an observation consistent with antibody binding to neural receptors. Furthermore, human patient IgG fractions competitively inhibited the binding of the muscarinic receptor agonist, [3H]quinuclidinyl benzilate, to salivary gland membranes. This autoantibody activity is lost after preadsorption with intact salivary cells. These findings indicate that autoantibodies play an important part in the functional impairment of secretory processes seen in connection with the autoimmune exocrinopathy of Sj?gren's syndrome.  相似文献   

20.
Impaired wound healing is a common complication of diabetes mellitus. The underlying pathophysiology of diabetes-impaired healing is poorly understood. In the present study we have compared cell proliferation rates, apoptosis (programmed cell death), the myofibroblast marker alpha-smooth muscle actin and procollagen I mRNA expression, between diabetic and control mice. Full-thickness skin wounds were made in non-obese diabetic (NOD) mice and C57B6 controls. NOD mice showed a marked retardation of wound healing at both 7 and 14 days after wounding. Comparison of cell proliferation rates 7 days after wounding, using 5-bromo-2'-deoxy-Uridine incorporation, showed higher rates of cell proliferation in controls (88.1 +/- 12.8) than in NOD wounds (52.1 +/- 9.9, p < 0.02, n = 4). Immunohistochemical detection of alpha-smooth muscle actin, showed a later onset in diabetic wounds, suggesting that wound contraction may be delayed in the diabetic animals. In situ hybridisation for alpha 1 (I) procollagen mRNA expression, showed reduced procollagen I expression in the diabetic wounds when compared with controls. Lastly, there appeared to be higher levels of apoptosis in diabetic wounds, shown by the terminal transferase mediated UTP nick end-labelling technique. Apoptotic cells were rare in control wounds confirming previous studies, which showed that apoptosis occurs late in normal wound healing as the wound matures into scar tissue. In conclusion, we hypothesize that reduced cell proliferation, retarded onset of the myofibroblast phenotype, reduced procollagen I mRNA expression and aberrant control of apoptotic cell death may contribute to impaired wound healing seen in this diabetic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号