首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An innovative formaldehyde gas sensor based on thin membrane type metal oxide of Ti O2 layer was designed and fabricated. This sensor under ultraviolet(UV) light emitting diode(LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system(MEMS) processing technology. First, plasma immersion ion implantation(PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.  相似文献   

2.
Poly4-vinylphenol (P4VP)/multi-wall carbon nanotubes(MWNTs) multi-layer sensitive films were deposited on interdigitated electrodes by airbrush technology to detect toluene vapor at room temperature.The surface and section morphologies of the multi-layer films were observed by a scanning electron microscope(SEM).It is found that the resistance of the sensor increases when it is exposed to toluene vapor and the response has a good linearity with the concentration of toluene.The results show that the P4VP/MWNTs three-layer film sensors have better sensing properties compared with the two-layer film sensors.The related sensing mechanism is studied in detail.  相似文献   

3.
秦玉香  化得燕  李晓 《半导体学报》2013,34(6):062002-6
The effects of the surface and orientation of a WO3 nanowire on the electronic structure are investigated by using first principles calculation based on density functional theory(DFT).The surface of the WO3 nanowire was terminated by a bare or hydrogenated oxygen monolayer or bare WO2 plane,and the[010]- and[001]-oriented nanowires with different sizes were introduced into the theoretical calculation to further study the dependence of electronic band structure on the wire size and orientation.The calculated results reveal that the surface structure, wire size and orientation have significant effects on the electronic band structure,bandgap,and density of states (DOS) of the WO3 nanowire.The optimized WO3 nanowire with different surface structures showed a markedly dissimilar band structure due to the different electronic states near the Fermi level,and the O-terminated[001] WO3 nanowire with hydrogenation can exhibit a reasonable indirect bandgap of 2.340 eV due to the quantum confinement effect,which is 0.257 eV wider than bulk WO3.Besides,the bandgap change is also related to the orientation-resulted surface reconstructed structure as well as wire size.  相似文献   

4.
The gas-sensitive film coated π-phase-shifted long-period fiber grating(LPFG),consisting of two same long-period fiber gratings cascaded by a regular fiber with length of half of the grating period,is proposed for gas sensing.The sensitivity of the sensor is defined by the change rate of the transmission at specific wavelength with respect to the film refractive index.The qualitative and numerical analyses show that to get a high sensitivity,the optimal coupling strength of each long-period fiber grating is...  相似文献   

5.
In this paper, we present the design of a new photonic crystal fiber (PCF) gas sensor for evanescent-field sensing in terahertz (THz) wave band. This sensor can be used to identify the gas, and its size is very large, so that it is beneficial to fill it with the test substance. Based on simulation, we demonstrate that the gas sensor using PCFs with four noncir- cular large holes in the cladding has high sensitivity and low loss, the confinement loss is less than 0.007 dB/m, and the bending loss is very small. The new PCF gas sensor can detect kinds of gases, for example, if test gas is water va- por, it has obvious absorption peaks in THz band, and the sensitivities of gas sensor are 64% and 73% at 1.097 THz and 0.752 THz, respectively. Due to the ultra-low loss and high sensitivity of the model, the novel steering-wheel structured fiber is very suitable for evanescent-field sensing and the detection of chemical and biological products.  相似文献   

6.
A novel MEMS inertial sensor with enhanced sensing capacitors is developed. The designed fabricated process of the sensor is a deep RIE process, which can increase the mass of the seismic to reduce the mechanical noise, and the designed capacitance sensing method is changing the capacitance area, which can reduce the air damping between the sensing capacitor plates and reduce the requirement for the DRIE process precision, and reduce the electronic noise by increasing the sensing voltage to improve the resolution. The design and simulation are also verified by using the FEM tool ANSYS. The simulated results show that the transverse sensitivity of the sensor is approximately equal to zero. Finally, the fabricated process based on silicon-glass bonding and the preliminary test results of the device for testing grid capacitors and the novel inertial sensor are presented. The testing quality factor of the testing device based on the slide-film damping effect is 514, which shows that the enhanced capacitors can reduce mechanical noise. The preliminary testing result of the sensitivity is 0.492pf/g.  相似文献   

7.
A compact ammonia gas sensor with two gas chambers is proposed in this paper,whose core sensing device is a U-bending microring resonator.The waveguides of ring part and feedback part in this resonator are made of silicon on insulator(SOI) ridge waveguide covered with ZnO nanocrystals which are sensitive to ammonia gas.The sensor can measure two groups of gas samples simultaneously.By computer simulation,we obtain the clear sensitivity curves of two gas chambers in ammonia sensor when the gas concentration increases from 0 to 4‰.The gas concentrations in two chambers can be obtained from one output spectrum,which significantly reduces the material and time consumption.  相似文献   

8.
In this paper, a partial discharge detection system is proposed using an optical fiber Fabry-Perot(FP) interferometric sensor, which is fabricated by photolithography. SU-8 photoresist is employed due to its low Young’s modulus and potentially high sensitivity for ultrasound detection. The FP cavity is formed by coating the fiber end face with two layers of SU-8 so that the cavity can be controlled by the thickness of the middle layer of SU-8. Static pressure measurement experiments are done to estimate the sensing performance. The results show that the SU-8 based sensor has a sensitivity of 154.8 nm/kP a, which is much higher than that of silica based sensor under the same condition. Moreover, the sensor is demonstrated successfully to detect ultrasound from electrode discharge.  相似文献   

9.
A magnetic field sensor based on nano-polysilicon thin films transistors(TFTs) with Hall probes is proposed.The magnetic field sensors are fabricated on <100> orientation high resistivity(ρ>500Ω·cm) silicon substrates by using CMOS technology,which adopt nano-polysilicon thin films with thicknesses of 90 nm and heterojunction interfaces between the nano-polysilicon thin films and the high resistivity silicon substrates as the sensing layers.The experimental results show that when VDS = 5.0 V,the magnetic sensitivities of magnetic field sensors based on nano-polysilicon TFTs with length-width ratios of 160μm/80μm,320μm/80μm and 480μm/80μm are 78 mV/T,55 mV/T and 34 mV/T,respectively.Under the same conditions,the magnetic sensitivity of the obtained magnetic field sensor is significantly improved in comparison with a Hall magnetic field sensor adopting silicon as the sensing layers.  相似文献   

10.
A high-sensitivity sensor for multiple gases based on microring array filter and fiber loop ring-down spectroscopy system is proposed and demonstrated. The parameters of the resonators are designed so that the filtered signal from a broadband light source can be tuned with an absorption spectral line of gas. Therefore, through adding microring resonators horizontally and vertically, the number of target gases and filter range are increased. In this research, in the broad spectral range of about 0.9 μm, only the absorption spectral lines of target gases are filtered. The simulation results show that three target gases, CH4, CO2 and HF, can be simultaneously detected by the sensing system. Owing to the fiber loop ring-down spectroscopy, the whole system is optimized in mini-size and sensitivity, and we can choose different sensing methods to enhance the measurement accuracy for high and low concentration conditions.  相似文献   

11.
A split-drain magnetic field-effect transistor (MAGFET) based on a nano-polysilicon thin film transistor (TFT) is proposed, which contains one source, two drains and one gate. The sensor chips were fabricated on (100) high resistivity silicon substrate by CMOS technology. When drain-source voltage equals 5.0 V and length and width ratio of the TFT channel is 80 μm/160 μm, the current and voltage magnetic sensitivities of the split-drain MAGFET based on the TFT are 0.018 mA/T and 55 mV/T, respectively. Through adopting nano-polysilicon thin films and nano-polysilicon thin films/high resistivity silicon heterojunction interfaces as the magnetic sensing layers, it is possible to realize detection of the external magnetic field. The test results show that magnetic sensitivity of the split-drain MAGFET can be improved significantly.  相似文献   

12.
Aiming at detecting Cl2 gas, this study was made on how to make In-based compound semiconductor oxide gas sensor. The micro-property and sensitivity of In-based gas sensing material were analyzed and its gas sensitive mechanism was also discussed. Adopting constant temperature chemical coprecipitation, the compound oxides such as In-Nb, In-Cd and In-Mg were synthesized, respectively. The products were sintered at 600 ℃ and characterized by the Scanning Electron Microscope (SEM), showing the grain size almost about 50-60 nm. The test results show that the sensitivities of In-Nb, In-Cd and In-Mg materials under the concentration of 50 × 10^-6 in Cl2 gas are above 100 times, 4 times and 10 times, respectively. The response time of In-Nb, In-Cd and In-Mg materials is about 30, 60 and 30 s, and the recovery time less than 2, 10 and 2 min, respectively. Among them, the In-Nb material was found to have a relatively high conductivity and ideal sensitivity to Cl2 gas, which showed rather good selectivity and stability, and could detect the minimum concentration of 0.5 × 10^-6 with the sensitivity of 2.2, and the upper limit concentration of 500 × 10^-6. The power loss of the device is around 220 mW under the heating voltage of 3 V.  相似文献   

13.
Boron-doped hydrogenated silicon films with different gaseous doping ratios(B2H6/SiH4) were deposited in a plasma-enhanced chemical vapor deposition(PECVD) system.The microstructure of the films was investigated by atomic force microscopy(AFM) and Raman scattering spectroscopy.The electrical properties of the films were characterized by their room temperature electrical conductivity(σ) and the activation energy(Ea).The results show that with an increasing gaseous doping ratio,the silicon films transfer from a microcrystalline to an amorphous phase,and corresponding changes in the electrical properties were observed.The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions.The measurements of the I-V characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04,and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it.The junction with such a recombination layer has a small resistance,a nearly ohmic contact,and a negligible optical absorption.  相似文献   

14.
Applications based on sensitive property of porous silicon (PSi) were researched. As a kind of porous material, the feasibility of PSi as a getter material was studied. Five groups of samples with different parameters were prepared. The gas-sensing property of PSi was studied by the test system and suitable parameters of PSi were also discussed. Meanwhile a novel structure of humidity sensor, using porous silicon as humidity-sensitive material, based on MEMS process has been successfully designed. The humidity-sensing properties were studied by a test system. Because of the polysilicon layer deposited upon the PSi layer, the humidity sensor can realize a quick dehumidification by itself. To extend service life and reduce the effect of the environment, a passivation layer (Si3N4) was also deposited on the surface of electrodes. The result indicated the novel humidity sensor presented high sensitivity (1.1 pF/RH%), low hysteresis, low temperature coefficient (0.5%RH/℃) and high stability.  相似文献   

15.
The formaldehyde(HCHO) detecting at room temperature is of great significance.Different ratios of P3HT/ZnO composite films(3:1,1:1,and 1:3) were deposited on the organic thin film transistor(OTFT) by spray-deposition technology,and the electrical properties and HCHO-sensing properties of all the prepared OTFT devices were measured by Keithley 4200-SCS source measurement unit.The results show that the OTFT sensor based on the P3HT/ZnO films with the ratio of 1:1 exhibited the best output and transfer curves.Different changing tendency were observed with the increase of ZnO proportion when exposed to HCHO at room temperature,and the device with the ratio of 1:1 behaved a good response and recovery characteristics.  相似文献   

16.
A MEMS piezoresistive magnetic field sensor based on a silicon bridge structure has been simulated and tested.The sensor consists of a silicon sensitivity diaphragm embedded with a piezoresistive Wheatstone bridge,and a ferromagnetic magnet adhered to the sensitivity diaphragm.When the sensor is subjected to an external magnetic field, the magnetic force bends the silicon sensitivity diaphragm,producing stress and resistors change of the Wheatstone bridge and the output voltage of the sensor.Good agreeme...  相似文献   

17.
WO3/Au composite film electrode was prepared by hydrothermal combined electrodeposition method. The samples were characterized by scanning electron microscope(SEM), energy dispersive spectrometer(EDS) and X-ray diffraction(XRD), and the results showed that WO3/Au composite film was synthesized. Electrochemical and spectral measurements were carried out to obtain the electrochromic response time, reversibility, coloration efficiency(CE) and transmittance of the WO3  相似文献   

18.
Theoretical design of a neotype fluidic controlling sensor system based on side-polished optical fiber is proposed. Numerical investigations demonstrate that the higher birefringence and resonance coupling can be achieved by flexible design of the polishing shape and depth in the research wavelength. The fluidic system is beneficial to selective integration of functional materials. The material is integrated into the fluidic system, which can achieve a birefringence up to 6.98×10-5, and the application of Sagnac thermometer in temperature sensing is studied, and a group of dips with different temperature sensitivities would be observed in the transmission spectra, which is about 1.6 nm/°C by calculating. furthermore, by introducing resonant coupling, single mode single polarization at 1 310 nm is realized. The refractive index (RI) response of the sensing system for a low RI range of 1.39—1.37 is approximately linear, and exhibits a sensitivity of 6 338 nm/RIU. The results show that the proposed neotype fluidic controlling system can be used as a flexible polarization filter or as a potential two-parameter sensor.  相似文献   

19.
正Device characteristics of TiO_2 gate dielectrics deposited by a sol-gel method and DC sputtering method on a P-type silicon wafer are reported.Metal-oxide-semiconductor capacitors with Al as the top electrode were fabricated to study the electrical properties of TiO_2 films.The films were physically characterized by using X-ray diffraction,a capacitor voltage measurement,scanning electron microscopy,and by spectroscopy ellipsometry.The XRD and DST-TG indicate the presence of an anatase TiO_2 phase in the film.Films deposited at higher temperatures showed better crystallinity.The dielectric constant calculated using the capacitance voltage measurement was found to be 18 and 73 for sputtering and sol-gel samples respectively.The refractive indices of the films were found to be 2.16 for sputtering and 2.42 for sol-gel samples.  相似文献   

20.
In this paper, a 20 nm palladium-silver (Pd/Ag) ultrathin optical film is used for hydrogen gas sensing. The mole ratio of the two metals is controlled at Pd:Ag=3:1. In the direct current (DC) sputtering machine, the optical thin film is evaporated on the optical glass. Compared with pure palladium, the Pd/Ag alloy can increase the life and the stability of the sensing film. Optimum sputtering parameters for Pd/Ag alloy are presented in this paper, and the effects of different experimental conditions for hydrogen sensor are investigated, including the temperature effect, humidity effect and cross sensitivity of hydrogen sensor for different gases. The experiment results indicate that the hydrogen sensor based on Pd/Ag optical thin film exhibits good sensing characteristics. The existing of CO and water in hydrogen increases the response time and decreases the response amplitude of optical fiber bundle hydrogen sensor. The experiment results show that the increasing temperature can eliminate the effect and shorten hydrogen sensor response time effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号