首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the -3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the -3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage.  相似文献   

2.
A current mode feed-forward gain control(CMFGC)technique is presented,which is applied in the front-end system of a hearing aid chip.Compared with conventional automatic gain control(AGC),CMFGC significantly improves the total harmonic distortion(THD)by digital gain control.To attain the digital gain control codes according to the extremely weak output signal from the microphone,a rectifier and a state controller implemented in current mode are proposed.A prototype chip has been designed based on a 0.13μm standard CMOS process.The measurement results show that the supply voltage can be as low as 0.6 V.And with the 0.8 V supply voltage,the THD is improved and below 0.06%(-64 dB)at the output level of 500 mVp-p,yet the power consumption is limited to 40μW.In addition,the input referred noise is only 4μVrmsand the maximum gain is maintained at 33 dB.  相似文献   

3.
This paper describes using a high-speed continuous-time analog adaptive equalizer as the front-end of a receiver for a high-speed serial interface,which is compliant with many serial communication specifications such as USB2.0,PCI-E2.0 and Rapid 10.The low and high frequency loops are merged to decrease the effect of delay between the two paths,in addition,the infinite input impedance facilitates the cascade stages in order to improve the high frequency boosting gain.The implemented circuit architecture could facilitate the wide frequency range from 1 to 3.3 Gbps with different length FR4-PCB traces,which brings as much as 25 dB loss.The replica control circuits are injected to provide a convenient way to regulate common-mode voltage for full differential operation.In addition,AC coupling is adopted to suppress the common input from the forward stage.A prototype chip was fabricated in 0.18-μm 1P6M mixed-signal CMOS technology.The actual area is 0.6×0.57 mm~2 and the analog equalizer operates up to 3.3 Gbps over FR4-PCB trace with 25 dB loss.The overall power dissipation is approximately 23.4 mW.  相似文献   

4.
An analog/digital reconfigurable automatic gain control(AGC) circuit with a novel DC offset cancellation circuit for a direct-conversion receiver is presented.The AGC is analog/digital reconfigurable in order to be compatible with different baseband chips.What’s more,a novel DC offset cancellation(DCOC) circuit with an HPCF(high pass cutoff frequency) less than 10 kHz is proposed.The AGC is fabricated by a 0.18μm CMOS process.Under analog control mode,the AGC achieves a 70 dB dynamic range with a 3 dB-bandwidth larger than 60 MHz.Under digital control mode,through a 5-bit digital control word,the AGC shows a 64 dB gain control range by 2 dB each step with a gain error of less than 0.3 dB.The DC offset cancellation circuits can suppress the output DC offset voltage to be less than 1.5 mV,while the offset voltage of 40 mV is introduced into the input.The overall power consumption is less than 3.5 mA,and the die area is 800×300μm~2.  相似文献   

5.
徐化  王磊  石寅  代伐 《半导体学报》2011,32(9):93-98
A 2.4 GHz low-power,low-noise and highly linear receiver front-end with a low noise amplifier(LNA) and balun optimization is presented.Direct conversion architecture is employed for this front-end.The on-chip balun is designed for single-to-differential conversion between the LNA and the down-conversion mixer,and is optimized for the best noise performance of the front-end.The circuit is implemented with 0.35μm SiGe BiCMOS technology.The front-end has three gain steps for maximization of the input dynamic range.The overall maximum gain is about 36 dB.The double-sideband noise figure is 3.8 dB in high gain mode and the input referred third-order intercept point is 12.5 dBm in low gain mode.The down-conversion mixer has a tunable parallel R-C load at the output and an emitter follower is used as the output stage for testing purposes.The total front-end dissipation is 33 mW under a 2.85 V supply and occupies a 0.66 mm~2 die size.  相似文献   

6.
A differential low-voltage high gain current-mode integrated RF front end for an 802.11b WLAN is proposed.It contains a differential transconductance low noise amplifier(Gm-LNA) and a differential current-mode 0 down converted mixer.The single terminal of the Gm-LNA contains just one MOS transistor,two capacitors and two inductors.The gate-source shunt capacitors,Cx1 and Cx2,can not only reduce the effects of gate-source Cgs on resonance frequency and input-matching impedance,but they also enable the gate inductance Lg1,2 to be selected at a very small value.The current-mode mixer is composed of four switched current mirrors.Adjusting the ratio of the drain channel sizes of the switched current mirrors can increase the gain of the mixer and accordingly increase the gain of RF receiver front-end.The RF front-end operates under 1 V supply voltage.The receiver RFIC was fabricated using a chartered 0.18μm CMOS process.The integrated RF receiver front-end has a measured power conversion gain of 17.48 dB and an input referred third-order intercept point(IIP3) of-7.02 dBm.The total noise figure is 4.5 dB and the power is only 14 mW by post-simulations.  相似文献   

7.
A low-power,configurable auto-gain control loop for a digital hearing aid system on a chip(SoC) is presented.By adopting a mixed-signal feedback control structure and peak detection and judgment,it can work in automatic gain or variable gain control modes through a digital signal processing unit.A noise-reduction and dynamic range(DR) improvement technique is also used to ensure the DR of the circuit in a low-voltage supply.The circuit is implemented in an SMIC 0.13 μm 1P8M CMOS process.The measurement results show that in a 1 V power supply,1.6 kHz input frequency and 200 mVp-p,the SFDR is 74.3 dB,the THD is 66.1 dB,and the total power is 89 μW,meeting the application requirements of hearing aid SoCs.  相似文献   

8.
李凡阳  江浩 《半导体学报》2014,35(3):035006-9
A hearing aid on-chip system based on accuracy optimized front- and back-end blocks is presented for enhancing the signal processing accuracy of the hearing aid. Compared with the conventional system, the accuracy optimized system is characterized by the dual feedback network and the gain compensation technique used in the front-andback-endblocks,respectively,soastoalleviatethenonlinearitydistortioncausedbytheoutputswing.By usingthetechnique,theaccuracyofthewholehearingaidsystemcanbesignificantlyimproved.Theprototypechip has been designed with a 0.13 m standard CMOS process and tested with 1 V supply voltage. The measurement results show that, for driving a 16 loudspeaker with a normalized output level of 300 mV p-p, the total harmonic distortion reached about60 dB, achieving at least three times reduction compared to the previously reported works. In addition, the typical input referred noise is only about 5 υV rms.  相似文献   

9.
雷倩倩  林敏  石寅 《半导体学报》2013,34(3):035007-8
A low voltage low power CMOS limiter and received signal strength indicator(RSSI) with an integrated automatic gain control(AGC) loop for a short-distance receiver are implemented in SMIC 0.13μm CMOS technology.The RSSI has a dynamic range of more than 60 dB and the RSSI linearity error is within i0.5 dB for an input power from -65 to -8 dBm.The RSSI output voltage is from 0.15 to 1 V and the slope of the curve is 14.17 mV/dB while consuming 1.5 mA(I and Q paths) from a 1.2 V supply.Auto LNA gain mode selection with a combined RSSI function is also presented.Furthermore,with the compensation circuit,the proposed RSSI shows good temperature-independent and good robustness against process variation characteristics.  相似文献   

10.
An area-efficient CMOS 1-MS/s 10-bit charge-redistribution SAR ADC for battery voltage measurement in a SoC chip is proposed. A new DAC architecture presents the benefits of a low power approach without applying the common mode voltage. The threshold inverter quantizer(TIQ)-based CMOS Inverter is used as a comparator in the ADC to avoid static power consumption which is attractive in battery-supply application. Sixteen level-up shifters aim at converting the ultra low core voltage control signals to the higher voltage level analog circuit in a 55 nm CMOS process. The whole ADC power consumption is 2.5 mW with a maximum input capacitance of 12 pF in the sampling mode. The active area of the proposed ADC is 0.0462 mm2 and it achieves the SFDR and ENOB of 65.6917 dB and 9.8726 bits respectively with an input frequency of 200 kHz at 1 MS/s sampling rate.  相似文献   

11.
This paper presents a novel approach for designing a reconfigurable variable gain amplifier(VGA) for the multi-mode multi-band receiver system RF front-end applications.The configuration,which is comprised of gain circuits,control circuit,DC offset cancellation circuit and mode switch circuit is proposed to save die area and power consumption with the function of multi-mode and multi-band through reusing.The VGA is realized in 0.18μm CMOS technology with 1.8 V power supply voltage providing a gain tuning...  相似文献   

12.
胡雪青  龚正  石寅  代伐 《半导体学报》2011,32(11):77-81
This paper presents the design and measured performance of a wideband amplifier for a direct conversion satellite tuner.It is composed of a wideband low noise amplifier(LNA) and a two-stage RF variable gain amplifier(VGA) with linear gain in dB and temperature compensation schemes.To meet the system linearity requirement, an improved distortion compensation technique and a bypass mode are applied on the LNA to deal with the large input signal.Wideband matching is achieved by resistive feedback and an off-chip LC-ladder matching network.A large gain control range(over 80 dB) is achieved by the VGA with process voltage and temperature compensation and dB linearization.In total,the amplifier consumes up to 26 mA current from a 3.3 V power supply. It is fabricated in a 0.35-μm SiGe BiCMOS technology and occupies a silicon area of 0.25 mm~2.  相似文献   

13.
This paper presents post-layout simulated results of an analog baseband chain for mobile and multimedia applications in a 0.13-μm SiGe BiCMOS process.A programmable 7th-order Chebyshev low pass filter with a calibration circuit is used in the analog baseband chain,and the programmable bandwidth is 1.8/2.5/3/3.5/4 MHz with an attenuation of 26/62 dB at offsets of 1.25/4 MHz.The baseband programmable gain amplifier can achieve a linear 40-dB gain range with 0.5-dB steps.Design trade-offs are carefully considered in designing the baseband circuit,and an automatic calibration circuit is used to achieve the bandwidth accuracy of 2%.A DC offset cancellation loop is also introduced to remove the offset from the layout and self-mixing,and the remaining offset voltage is only 1.87 mV.Implemented in a 0.13-μm SiGe technology with a 0.6-mm~2 die size,this baseband achieves IIP3 of 23.16 dBm and dissipates 22.4 mA under a 2.5-V supply.  相似文献   

14.
For stacked battery monitoring IC high speed and high precision voltage acquisition requirements, this paper introduces a kind of symmetrical type high voltage switch circuit. This kind of switch circuit uses the voltage following structure, which eliminates the leakage path of input signals. At the same time, this circuit adopts a high speed charge pump structure, in any case the input signal voltage is higher than the supply voltage, it can fast and accurately turn on high voltage MOS devices, and convert the battery voltage to an analog to digital converter. The proposed high voltage full symmetry switch has been implemented in a 0.18μm BCD process; simulated and measured results show that the proposed switch can always work properly regardless of the polarity of the voltage difference between the input signal ports and an input signal higher than the power supply.  相似文献   

15.
廖峻  赵毅强  耿俊峰 《半导体学报》2012,33(2):025014-5
A third-order, sub-1 V bandgap voltage reference design for low-power supply, high-precision applications is presented. This design uses a current-mode compensation technique and temperature-dependent resistor ratio to obtain high-order curvature compensation. The circuit was designed and fabricated by SMIC 0.18 μm CMOS technology. It produces an output reference of 713.6 mV. The temperature coefficient is 3.235 ppm/℃ in the temperature range of -40 to 120 ℃, with a line regulation of 0.199 mV/V when the supply voltage varies from 0.95 to 3 V. The average current consumption of the whole circuit is 49 μA at the supply voltage of 1 V.  相似文献   

16.
A differential automatic gain control(AGC) circuit is presented.The AGC architecture contains twostage variable gain amplifiers(VGAs) which are implemented with a Gilbert cell,a peak detector(PD),a low pass filter,an operational amplifier,and two voltage to current(V-I) convenors.One stage VGA achieves 30 dB gain due to the use of active load.The AGC circuit is implemented in UMC 0.18-μm single-poly six-metal CMOS process technology.Measurement results show that the final differential output swing of the 2nd stage VGA is about 0.9-Vpp;the total gain of the two VGAs can be varied linearly from -10 to 50 dB when the control voltage varies from 0.3 to 0.9 V.The final circuit(containing output buffers and a band-gap reference) consumes 37 mA from single 1.8 V voltage supply.For a 50 mV amplitude 60%modulation depth input AM signal it needs 100μs to stabilize the output.The frequency response of the circuit has almost a constant -3 dB bandwidth of 2.2 MHz. Its OIP3 result is at 19 dBm.  相似文献   

17.
赵锦鑫  胡雪青  石寅  王磊 《半导体学报》2011,32(10):120-125
This paper presents a fully integrated RF front-end with an automatic gain control(AGC) scheme and a digitally controlled radio frequency varied gain amplifier(RFVGA) for a U/V band China Mobile Multimedia Broadcasting(CMMB) direct conversion receiver.The RFVGA provides a gain range of 50 dB with a 1.6 dB step. The adopted AGC strategy could improve immunity to adjacent channel signal,which is of importance for CMMB application.The front-end,composed of a low noise amplifier(LNA),an RFVGA,a mixer and AGC,achieves an input referred 3rd order intercept point(IIP3) of 4.9 dBm with the LNA in low gain mode and the RFVGA in medium gain mode,and a less than 4 dB double side band noise figure with both the LNA and the RFVGA in high gain mode.The proposed RF front-end is fabricated in a 0.35μm SiGe BiCMOS technology and consumes 25.6 mA from a 3.0 V power supply.  相似文献   

18.
Besides the electrode-pair antenna,the magnetic antenna is also used for the extremely low frequency (ELF) submarine communication.To receive the weak ELF signals,the structure of a small sized magnetic antenna determines its specific electrical characteristics.The ELF magnetic antenna shows high internal resistance, alternating-current impedance,and a resonance frequency near the operating bandwidth.In accordance with the electrical characteristics of ELF magnetic antenna,a low noise preamplifier and frequency compensation circuit were designed and realized.The preamplifier is a three-stage negative feedback circuit,which is composed of parallel JFET,common-emitter amplifier with a Darlington structure and a common-collector amplifier in push-pull connection.And a frequency compensation circuit is cascaded to compensate the characteristic in low frequency range.In the operating bandwidth f = 30-200 Hz,the circuit has a gain of 39.4 dB.The equivalent input noise is 1.97 nV/Hz1/2 and the frequency response keeps flat in operating bandwidth.The proposed preamplifier of the ELF magnetic antenna performs well in receiving ELF signals.  相似文献   

19.
A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/℃ is achieved over -25 to 125 ℃ temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2.  相似文献   

20.
An integrated downconverter with high linearity for digital broadcasting system receivers is implemented in a 0.13 m CMOS process with an active area of 0.1 mm2. The current-mode scheme is adopted to improve linearity performance by avoiding voltage fluctuation. A passive CMOS switching pair is utilized to improve the even-order linearity of the downconverter. A current amplifier is used to provide low input impedance which will easily lead to a wide operating bandwidth and high linearity. Moreover, a current-mode Sallen-Key low-pass filter is adopted for effective rejection of out-of-band interferers and also low input impedance. The digital-assisted DC offset calibration improves the second-order distortion of the downconverter. This design achieves a maximum gain of 40 d B and a dynamic range of 10 d B. Measured noise figure is 8.2 d B, an IIP2 of 63 d Bm, an IIP3 of 17 d Bm at the minimum gain of 30 d B. The downconverter consumes about 7.7 m A under a supply of 1.2 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号