共查询到19条相似文献,搜索用时 78 毫秒
1.
一种新型高峰值功率激光注入光纤耦合技术 总被引:3,自引:2,他引:3
分析了导光锥的导光原理和激光注入光纤耦合原理,通过射线理论分析并提出了导光锥的设计方法。通过对实验用导光锥进行导光率测试和耦合传输特性实验研究得到:导光锥的导光率为99%,导光锥与光纤耦合效率大于73%;导光锥端面的激光诱导损伤阈值能量密度为56 J/cm2,阈值功率密度为2.25 GW/cm2;在光纤发生端面损伤前其输出端输出激光能量达到50 mJ。采用导光锥实现高峰值功率脉冲激光注入光纤耦合可以有效地提高光纤传输激光容量。 相似文献
2.
3.
4.
5.
6.
研究了实心圆锥形光锥和光纤截面的各种曲面的几何成像原理,利用光锥会聚光能的作用降低会聚光功率密度,采用球面光纤头,扩大光纤接收光能的面积.使激光光束垂直于光锥大端入射,40~50%的激光直接射出小端,其余激光在光锥内发生一次全反射射出小端.光纤头球面贴近小端同轴放置,使进入光纤的光线入射角大于光纤的全反射临界角,从而实现窄脉冲高功率激光的光纤耦合.
文中对圆锥形光锥和光纤头球面的参数进行计算.由传输光束的截面和光纤纤芯尺寸选取小端直径,使它略小于光纤纤芯直径,根据光纤数值孔径确定光锥顶角和光纤球面曲率半径.
实验采用固体YAG高重复率电光调Q激光输出,平均功率30 W,光束直径Φ6 mm,光纤纤芯直径Φ0.6 mm,实心圆锥形光锥小端直径Φ0.4 mm,光锥顶角24°,材料折射率1.52,光纤耦合效率75%.(PG10) 相似文献
7.
8.
9.
测量了光纤面板、光锥、耦合光纤面板以及耦合光锥的光谱透过率和调制传递函数。光谱透过率测量结果表明,光纤面板的光谱透过率与光纤面板的厚度以及入射光的波长有关。光纤面板的厚度越厚,透过率越低。对相同厚度的光纤面板而言,漫射光的透过率低于准直光的透过率。原因是漫射光在光纤面板中的传输远距离大于准直光在光纤面板中的传输距离,因此吸收更多。光纤面板除玻璃产生吸收外,玻璃中的稀土元素也会产生杂质吸收。调制传递函数的测量结果表明,光纤面板的调制传递函数不仅与光纤的丝径有关,还与光纤面板的厚度有关,光纤面板的厚度越厚,调制传递函数越低。原因是少部分光线在光纤中传输时会发生串光。光锥与光纤面板相比,光谱透过率和调制传递函数均较低。当光锥与光纤面板耦合后,特别是在漫射光入射条件下,光谱透过率更低。对550 nm的波长而言,透过率仅为11.7%。光锥与光纤面板耦合后,不仅光谱透过率有损失,而且调制传递函数也降低,30l p/mm处的调制传递函数仅为47%。 相似文献
10.
文章对传输紫外激光空芯光纤系统进行了研究,利用高斯光束传输规律和波导耦合理
论研究了紫外激光与空芯光纤的耦合,分析了在选定毛细管内镀制选定膜系可以制备传输紫外激光的空芯光纤,并针对空芯光纤内径较大而导致的输出光斑较大的问题,提出使空芯光纤输出端与透镜耦合方案。 相似文献
11.
12.
13.
14.
文章从高功率半导体激光器光纤耦合模块的组成和各个部分的机理出发,详细分析了
影响其可靠性的因素,主要有以下三个方面:激光器自身的因素、耦合封装工艺和电学因素。通过优化原有工艺与采用新技术,提高了模块的可靠性,拓宽了其应用领域。 相似文献
15.
多单元半导体激光器的高亮度光纤耦合输出 总被引:3,自引:0,他引:3
设计并研制了一种多单元半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用分子束外延(MBE)方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用4只准直的单条形大功率半导体激光器,器件腔长为2 mm,发光区宽度为100μm,单条形器件的连续输出功率为5.0 W,每两只单条形器件的准直输出光束经过空间合束后再通过偏振合束,实现了多单元器件输出的高光束质量功率合成,采用简单的平凸透镜实现了合束光束与100μm芯径、数值孔径(NA)0.22石英光纤的高效耦合,耦合效率高达79%,输出功率达10.17 W,光纤端面功率密度达1.0×105W/cm2. 相似文献
16.
17.
18.
针对高速大功率半导体激光器,设计了主振激光器与半导体光放大器分立集成的高速大功率半导体激光器组件,并对其中半导体光放大器(SOA)的光纤耦合技术进行了研究,采用单模光纤耦合技术以及光路可逆原理设计了SOA的注入端耦合光路,实现了主振激光器到SOA的高效注入,耦合效率大于50%,采用微透镜组技术设计了SOA输出端的耦合光路,实现了Φ62.5μm的光纤耦合输出238mW。同时针对光纤耦合工艺,利用Ansys软件对耦合结构进行了激光焊接耦合工艺的热应力分析,得到了优化的焊接工艺条件,并对耦合中存在的应力进行了释放处理,有效提高了输出功率的稳定性。 相似文献
19.
用于光纤拉曼放大的高功率光纤激光器 总被引:4,自引:1,他引:4
综述用于光纤拉曼放大器的高功率光纤激光器,详细分析了双包层光纤激光器工作原理及其关键技术;介绍了双包层光纤激光器抽运的级联拉曼光纤激光器的最新进展,并展望了这一领域的发展。 相似文献