首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the experimental results of a research carried out on the strength and permeability related properties of high performance concretes made with binary and ternary cementitious blends of fly ash (FA) and metakaolin (MK). The replacement ratios for FA were 10% and 20% by weight of Portland cement and those for MK were 5% and 10%. Compressive strength, chloride permeability, water sorptivity, and water absorption properties of concretes were obtained in this study for different testing ages up to 90 days. The influences of fly ash, metakaolin, and testing age on the properties of concretes have been identified using the analysis of variance. The statistical based regression models and the response surface method with the backward stepwise techniques were employed in the multi-objective optimization analysis. That is carried out by maximizing compressive strength while minimizing chloride permeability, water sorptivity, and water absorption. It was observed that fly ash and especially metakaolin were very effective on the aforementioned properties of the concretes, depending mainly on replacement levels and duration of curing. The results indicated that the ternary use of fly ash and metakaolin with the approximate cement replacement values of 13.3% and 10% respectively has provided the best results for the testing age of 90 days, when the optimized strength and permeability based durability properties of the concretes are concerned.  相似文献   

2.
通过开展在不同龄期、不同环境湿度下玻璃纤维增强水泥(GRC)试件的抗折强度、抗压强度试验和基体pH值测定,研究了环境湿度对掺加粉煤灰和硅灰等活性矿物掺合料的GRC试件力学性能的影响。结果表明:环境湿度对GRC试件的抗折强度有重要影响,相对湿度越大,随着龄期增加, GRC试件抗折强度降低越严重;在温度60℃、相对湿度95%条件下,经过56 d龄期后,掺有40%粉煤灰和10%硅灰的GRC试件抗折强度比未掺加粉煤灰和硅灰的GRC试件的抗折强度提高48.5%、抗压强度提高23.6%, GRC基体pH值降低6%。在相同的湿度条件下,掺有粉煤灰和硅灰试件的pH值在各个龄期都低于普通硅酸盐水泥试件,说明粉煤灰和硅灰的掺入能降低水泥水化液相的碱度,进而延缓了纤维受侵蚀的速度,显著改善了GRC试件的力学及耐久性能。通过对试验结果进行分析,利用MATLAB软件建立了GRC试件抗折强度和抗压强度与水泥砂浆基体pH值及时间的关系式。   相似文献   

3.
When dealing with concrete resistance to high temperatures it is important for design purposes to know the elastic parameters, such as the temperature–strain curves and the modulus of elasticity.Concretes containing a high volume of fly ash differ from conventional mixes in the cementitious phase. This results in a different behaviour under heating compared to plain Portland cement concretes. To find the elastic response of fly ash concrete four series of concrete mixtures were manufactured: one with cement only, another with 30% by mass partial replacement of cement by fly ash, and two with 30% and 40% by mass replacement of cement by ground fly ash. Tests were carried out on cylinders (150 × 300 mm). A high-calcium fly ash was used.The conditions were selected so that the applied level of stress corresponded to 25% or to 40% of the ultimate compressive strength of concrete, and a transient type of temperature regime was followed. Based on the experiments the critical temperature, the residual deformation and the modulus of elasticity were determined.The results indicate that concretes containing a high volume of fly ash are more sensitive to high temperatures, since they developed greater deformations. The fineness of the fly ash used also seems to influence the degree of deformation in an adverse way.  相似文献   

4.
The solidification/stabilization (S/S) process of municipal solid waste (MSW) fly ash in cementitious matrices was investigated in order to ascertain the feasibility of a washing pretreatment of fly ash with water as a means of maximizing the ash content of cementitious mixtures. Four types of fly ash resulting from different Italian MSW incineration plants and ASTM Type III Portland cement were used in this study. Ash-cement mixtures with different fly ash/cement (FA/C) ratios were made using untreated and washed fly ash. Washing of fly ash with water was realized by a two-stage treatment (liquid/solid=25; mixing time=15 min for each stage). The cementitious mixtures were characterized for water demand, setting time, mechanical strength, and heavy metals leachability. Comparison between the above properties of mixtures incorporating untreated and washed fly ash (particularly, setting characteristics), coupled with economical evaluation of the S/S process when applied to untreated and washed fly ash, proved the feasibility of washing pretreatment as a means of maximizing the incorporation of MSW fly ash in cementitious matrices (ash content up to 75%-90% by weight of total solid).  相似文献   

5.
Sustained research and development work on the utilization of fly ash for various productive uses have been carried out in the past. In the construction industry, major attention has been devoted to the use of fly ash in concrete as a cement replacement. The production of artificial lightweight coarse aggregate using fly ash has potential for its large-scale utilization in the construction industry and this is an area that merits attention in many parts of the world, bearing in mind the rapid dwindling of sources of natural aggregates. As only limited details on manufacture and parameters influencing properties of sintered fly ash aggregates have been reported in the literature, a systematic study was undertaken. In this paper, the relative performance of three binders, viz., cement, lime and bentonite, on the properties of sintered fly ash aggregate is reported. The salient observations are (i) the characterization studies on sintered fly ash aggregates show that the properties of aggregates depend on the type of binder and its dosage, (ii) the significant improvement in strength and reduction in water absorption of sintered fly ash aggregate is observed when bentonite is added with fly ash, (iii) the binders used did not alter the chemical composition, while they influence the microstructure of the aggregate, which results in enhancement in the properties of aggregates.  相似文献   

6.
Four grades of concrete with and without fly ash were devised and tested for compressive strength. The concretes were cured in three different curing regimes. The skin strength of concretes under inadequate curing was calculated by assuming a linear model for the variation of strength, and the strength difference between cement and fly ash concretes has been worked out. The skin strength of cement concretes was found to be higher than that of fly ash concretes. The test results were found to be affected by the size of the test specimen, when proper curing was not provided. The difference in sorptivity of fly ash and cement concretes cured for four days and not provided with any initial curing has been included. For all grades of concrete, the sorptivity of fly ash concrete was found to be marginally higher. The difference in sorptivity between fly ash and cement concretes was observed to increase as the strength of the mix decreased. The effect of initial curing was found to be highly significant. The sorptivity of samples with no curing was twice as much as those with four days initial curing. Besides the material properties, the age and strength of a fly ash concrete were also found to be important factors in determining the cementing efficiency of the fly ash.  相似文献   

7.
Hydration of high-volume fly ash cement pastes   总被引:20,自引:0,他引:20  
The hydration processes of high-volume fly ash cement paste were investigated by examining the non-evaporable water content, the CH content, the pH of pore solution and the fraction of reacted fly ash, curing at either 20°C or elevated temperatures after an initial curing at 20°C. The replacement percentage levels of fly ash were 40%, 50% and 60% by weight, respectively. The results revealed that the non-evaporable water content in high-volume fly ash cement pastes does not develop as plain cement pastes does, so it may be improper to apply the non-evaporable water content to evaluate the hydration process in high-volume fly ash cement matrix. The reduction in CH content increases with the progressing of hydration process and varies linearly with the logarithm of curing age. The addition of 3.0% of Na2SO4 could accelerate the pozzolanic reaction of fly ash at early ages. At 20°C, the pH of pore solution of high-volume fly ash cement paste was reduced to a great extent at early ages and it continued to decline at later ages due to the inclusion of large amount of fly ashes. At elevated temperatures, however, this trend was not found. The fraction of reacted fly ash directly reflects the pozzolanic reactivity of fly ash both at normal and elevated temperatures. There is some inherent correlation between the reduction in CH content, the pH of pore solution and the fraction of reacted fly ash. For specified matrix, the consumption of CH and the pH of pore solutions change linearly with the increase of the fraction of reacted fly ash.  相似文献   

8.
This paper explains the effect of water curing condition on compressive strengths of fly ash–cement paste by quantitative data of hydration degree. Hydration of fly ash–cement paste was estimated by Rietveld analysis and selective dissolution. The result shows that the hydration degree of belite is affected by water curing conditions, more so than that of fly ash and alite. Fly ash still continues to hydrate even without an extra, external supply of water. The strong dependence of fly ash–cement concrete on curing conditions does not come from the hydration degree of fly ash, but rather comes from the hydration degree of cement, especially belite. When the water to binder ratio is low enough, the hydration of cement plus small hydration of fly ash are considered to be enough for adequate compressive strength at the beginning. Then, compressive strength of fly ash–cement paste becomes less sensitive to the water curing period.  相似文献   

9.
Various activation techniques, such as physical, thermal and chemical were adopted. By adopting these methods of activation, hydration of fly ash blended cement was accelerated and thereby improved the corrosion-resistance and strength of concrete. Concrete specimens prepared with 10%, 20%, 30% and 40% of activated fly ash replacement levels were evaluated for their compressive strengths at 7, 14, 28 and 90 days and the results were compared with ordinary Portland cement concrete (without fly ash). Corrosion-resistance of fly ash cement concrete was studied by using anodic polarization technique. Electrical resistivity and ultrasonic pulse velocity measurements were also carried out to understand the quality of concrete. The final evaluation was done by qualitative and quantitative estimation of corrosion for different systems. All the studies confirmed that upto a critical level of 20–30% replacement; activated fly ash cement improved both the corrosion-resistance and strength of concrete. Chemical activation of fly ash yielded better results than the other methods of activation investigated in this study.  相似文献   

10.
李振国  刘博  吴运强  王博  郭江涛  余四文 《材料导报》2018,32(16):2733-2737
为了研究碱式硫酸镁水泥耐酸腐蚀性能,将不同配比的水泥试样分别在柠檬酸溶液及水中浸泡不同龄期,再进行质量变化测定及抗折强度和抗压强度试验。采用XRD与SEM技术分析不同配比水泥试样浸泡于两种溶液后的物相组成和显微形貌。结果表明,掺入的矿渣和粉煤灰对碱式硫酸镁水泥具有良好的密实填充作用,降低了水泥的孔隙率,有效阻止了侵蚀介质的进入,其耐酸腐蚀性能与未掺矿渣和粉煤灰的碱式硫酸镁水泥相比有明显提升,其中,掺矿渣的碱式硫酸镁水泥耐酸腐蚀性能更优。  相似文献   

11.
粉煤灰对磷酸盐水泥耐水性能的影响   总被引:2,自引:0,他引:2  
通过掺加粉煤灰改善磷酸盐水泥的耐水性能,同时研究了粉煤灰对磷酸盐水泥工作性能、体积稳定性和粘结强度的影响。结果表明,粉煤灰掺量达到30%时,耐水性增强,水养条件下抗压强度和抗折强度提高近40%;粉煤灰掺量为10%时,流动度提高近20%;粉煤灰掺量为20%时,粘结强度达到最大。随着粉煤灰掺量的增大,膨胀率降低,体积稳定性提高。  相似文献   

12.
The influence of high-calcium fly ash and silica fume as a binary and ternary blended cement on compressive strength and chloride resistance of self-compacting concrete (SCC) were investigated in this study. High-calcium fly ash (40–70%) and silica fume (0–10%) were used to replace part of cement at 50, 60 and 70 wt.%. Compressive strength, density, volume of permeable pore space (voids) and water absorption of SCC were investigated. The total charge passed in coulombs was assessed in order to determine chloride resistance of SCC. The results show that binary blended cement with high level fly ash generally reduced the compressive strength of SCC at all test ages (3, 7, 28 and 90 days). However, ternary blended cement with fly ash and silica fume gained higher compressive strength after 7 days when compared to binary blended fly ash cement at the same replacement level. The compressive strength more than 60 MPa (high strength concrete) can be obtained when using high-calcium fly ash and silica fume as ternary blended cement. Fly ash decreased the charge passed of SCC and tends to decrease with increasing fly ash content, although the volume of permeable pore space (voids) and water absorption of SCC were increased. In addition when compared to binary blended cement at the same replacement level, the charge passed of SCC that containing ternary blended cement was lower than binary blended cement with fly ash only. This indicated that fly ash and silica fume can improve chloride resistance of SCC at high volume content of Portland cement replacement.  相似文献   

13.
This paper presents an experimental investigation on the effect of fly ash fineness on compressive strength, porosity, and pore size distribution of hardened cement pastes. Class F fly ash with two fineness, an original fly ash and a classified fly ash, with median particle size of 19.1 and 6.4 μm respectively were used to partially replace portland cement at 0%, 20%, and 40% by weight. The water to binder ratio (w/b) of 0.35 was used for all the blended cement paste mixes.Test results indicated that the blended cement paste with classified fly ash produced paste with higher compressive strength than that with original fly ash. The porosity and pore size of blended cement paste was significantly affected by the replacement of fly ash and its fineness. The replacement of portland cement by original fly ash increased the porosity but decreased the average pore size of the paste. The measured gel porosity (5.7–10 nm) increased with an increase in the fly ash content. The incorporation of classified fly ash decreased the porosity and average pore size of the paste as compared to that with ordinary fly ash. The total porosity and capillary pores decreased while the gel pore increased as a result of the addition of finer fly ash at all replacement levels.  相似文献   

14.
Experimental data are presented which suggest that the development of compressive strength of fly ash concretes can be explained by superposition of two independent mechanical pore-filling mechanisms in the cement—fly ash paste. It is also suggested that the traditional water/cement ratio law for ordinary Portland cement concretes can be applied to fly ash concretes, provided that a slight modification is introduced. This will be of assistance in the design of fly ash concrete mixes for compressive strength.  相似文献   

15.
The use of fly ash as a mineral admixture in the manufacture of concrete has received considerable attention in recent years. For this reason, several experimental studies are carried out by using fly ash at different proportions replacement of cement in concrete. In the present study, the models are developed in genetic programming for predicting the compressive strength values of cube (100 and 150 mm) and cylinder (100 × 200 and 150 × 300 mm) concrete containing fly ash at different proportions. The experimental data of different mixtures are obtained by searching 36 different literatures to predict these models. In the set of the models, the age of specimen, cement, water, sand, aggregate, superplasticizers, fly ash and CaO are entered as input parameters, while the compressive strength values of concrete containing fly ash are used as output parameter. The training, testing and validation set results of the explicit formulations obtained by the genetic programming models show that artificial intelligent methods have strong potential and can be applied for the prediction of the compressive strength of concrete containing fly ash with different specimen size and shape.  相似文献   

16.
The subject of this work is to investigate the effect of fly ash on the strength of concrete filled steel tubular columns from 28 to 365 days. A contrast study was carried out on concrete filled steel tubular columns incorporating 10–40 wt% fly ash, and for control Portland cement concrete filled steel tubular columns. The effect of pre-coating the inner surface of steel tubes with a thin layer of fly ash was also studied. Assessments of the concrete mixes were based on the compressive strength and the bond strength. The results show that a lower replacement with fly ash can improve both bond strength and compressive strength, while a higher replacement with fly ash requires a relatively longer time to achieve similar beneficial effects. Pre-coating the inner surface of steel tubes with a thin layer of fly ash can notably improve the bond strength. The microstructure of the interface between concrete and steel tube was also studied by using scanning electron microscopy analyzer.  相似文献   

17.
Batch contact, tank leaching and column percolation tests were conducted to investigate the Cr(VI) concentration in the solution/leachate from two fly ashes (fly ash A and B) with additives. The additives used were cement, low alkalinity additive and Ariake clay. There are several factors influencing Cr(VI) concentration in solution/leachate, namely (1) properties of solid/liquid mixture (chemical composition, pH value, etc.), (2) cementation effect, (3) amount of water in contact with the solid mass (solid/liquid ratio in case of batch contact test), and (4) adsorption characteristics of the solid particles to Cr ions. The test results indicate that fly ash A has less cementation component (CaO of 1.92%) and the amount of water in contact with the fly ash played an important role. As a result, Cr(VI) concentration from the column percolation test was much higher than that of the batch contact test. Adding Ariake clay had more effect on reducing Cr(VI) concentration for fly ash A than B because the pH value of the solution from fly ash A was lower, which provided a favorable condition for Cr(VI) ions to be reduced to Cr(III) and possibly to be adsorbed by clay particles. Fly ash B has more cementation component (7.15%) and for column percolation test, curing the sample for 1 week reduced Cr(VI) concentration significantly. The test results indicate that in engineering practice, a method which closely simulates the field condition should be selected to assess possible environmental effects and corresponding countermeasure methods.  相似文献   

18.
The aim of this study is to evaluate the effect of high-volume fly ash on some durability characteristics of roller compacted concrete (RCC). In addition to a control mixture without fly ash, two different series of mixtures were prepared by partial replacement of either cement or aggregate with fly ash. The mixtures were designed by a maximum density method. A total of 28 mixtures having four different water/binder ratios (0.30, 0.35, 0.40 and 0.45 by mass) were prepared to determine the optimum water/binder ratio. Among these, seven mixtures containing the optimum water content were selected for further experimental study. It was observed that in the mixtures where cement was substituted with fly ash, increasing the fly ash content adversely affected the durability performance up to 90 days. However, fly ash substitution for a part of the aggregate improved the durability characteristics of the mixture as the amount of fly ash increased.  相似文献   

19.
通过调整纳米SiO_2与粉煤灰的比例,研究了两者协同作用对水泥基材料性能的影响。结果表明,纳米SiO_2(NS)和粉煤灰协同作用效果优于NS单一掺加,3%(质量分数,下同)纳米SiO_2和不大于30%的粉煤灰同时掺加可以补偿粉煤灰引起的早期强度降低,且砂浆28d抗压强度不降低。随着NS掺量增加水泥基材料的干燥收缩增大,粉煤灰可以改善纳米SiO_2对干燥收缩的不利影响。随着NS掺量的增加,试件的抗冻性和抗氯离子渗透性能均得到提升,掺加3%NS与30%粉煤灰使水泥基材料达到最佳耐久性能。NS可以缩短水泥水化诱导期,加速水泥水化进程,且使胶凝体系总放热量增加。在水泥粉煤灰体系中掺入NS后,非蒸发水含量在早期明显增多,但在后期增长缓慢。  相似文献   

20.
以阜新发电厂煤粉炉粉煤灰为研究对象,通过室内试验研究了粉煤灰的路用土工性质。该粉煤灰属于含砂低液限粉土,级配不良;粉煤灰的比重为2.27,明显低于一般粘土和砂土。在含水率18%~35%范围内均可获得较为理想的压实密度,表明粉煤灰击实密度对含水率不是很敏感。该粉煤灰渗透性较强,遇水易崩解。粉煤灰压缩系数小,因此路基填成后的沉降量也小,利于路基稳定。粉煤灰的抗剪强度主要依赖于内摩擦角,其内摩擦角远大于一般的粘土。粉煤灰的回弹模量E0值与粘土的回弹模量值差别不大。在相应的压实度条件下,该粉煤灰可用于下路堤填料、上路堤填料和下路床填料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号