首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The creep crack growth behaviour of type 316stainless steel and its weldment in the temperature range 600° to BOOoe has been studied under plane stress conditions. The creep crack growth (eeG) rate bears a relation with sheloa;d point deflection (LPD) rate independent of the load. The parameters stress mtenstty factor, K,and the energy rate line integral C*,have been correlated with the e.eG rate. At 6000e tsecrack growth takes place along the interface between austemte and thsdelta fernte: At 700° and BOOoe sigma phase formation is dominant and crack growth tS along the Stgma phase and austenite.  相似文献   

2.
A common evaluation is given for creep crack growth and fatigue crack growth experiments which have been performed at the companies ABB, Siemens-KWU and KFA. The materials under investigation were X10NiCrAlTi32 20 (Alloy 800) and NiCr22Col2Mo (Alloy 617). Several production lots and semi-finished materials as well as welded materials have been tested. Testing techniques differed at the different labs. In order to eliminate the influence of individual testing techniques, material from some production lots was investigated at different labs. The given data cover fatigue crack growth (the materials were tested between room temperature and 1050°C; the influence of temperature, R?ratio, and frequency was investigated) and creep crack growth (Alloy 800 was tested between 550°C and 900°C, Inconel 617 between 800°C and 1000°C; the evaluation was done on the basis of the fracture mechanics parameters K1 and C*).  相似文献   

3.
Acoustic emission (AE) behaviour during fatigue crack growth (FCG) in a ductile AISI type 316 austenitic stainless steel is reported. The two substages in the stage II Paris regime of FCG could be distinguished by a change in the rate of acoustic activity with increase in crack growth rate. The transition point in the cumulative ringdown count plot coincides with that in the da/dn plot. The AE activity increases with increase in ΔK during stage IIa and decreases during stage IIb. The major source of AE during stage IIa is found to be the plastic deformation within the cyclic plastic zone (CPZ) as compared to the phenomena such as monotonic plastic zone (MPZ) expansion, ductile crack growth, crack closure, etc. The increase in AE activity with increase in ΔK during stage IIa is attributed to the increase in the size of the CPZ which is generated and developed only under plane strain conditions. The decrease in AE activity during stage IIb is attributed to the decrease in the size of the CPZ under plane stress condition. The high acoustic activity during the substage IIa is attributed to irreversible cyclic plasticity with extensive multiplication and rearrangement of dislocations taking place within the CPZ. The AE activity is found to strongly depend on the optimum combination of the volume of the CPZ, average plastic strain range and the number of cycles before each crack extension. Based on this, an empirical relationship between the cumulative RDC and ΔK has been proposed and is found to agree well with experimentally observed values.  相似文献   

4.
5.
A study of fatigue crack propagation rates of 316 grade stainless steels in air and in an aqueous saline environment was carried out in an attempt to assess the fatigue properties encountered when such materials are used as surgical implants. The effects of variables such as temperature, pH, oxygenation level, bulk electrode potential, mean stress, frequency and stress waveform on the Paris crack growth law parameters were determined. Corrosion fatigue effects were observed in the aqueous saline environment, and a mechanism to describe this effect is proposed.  相似文献   

6.
The theoretical foundation of a micromechanical model that accounts for the fatigue crack growth threshold conditions at notches was described in Part I of this study. Strictly speaking, the proposed formulation is restricted to the analysis of a component with an elliptical notch under antiplane stress. In this section of the study, the expressions derived in Part I are generalized for application to axial stress states and non-elliptical notch geometries. The procedure is validated by comparing the model's predictions with reported experimental results.  相似文献   

7.
Different analytical models of damage accumulation by cyclic plasticity have been developed to predict fatigue crack growth from monotonic, cyclic, fracture toughness and crack propagation threshold properties. The models' development logic is condensed as a flowchart, which emphasizes, in a clear and easily comprehensive way, all the required modeling steps. 1020 and API 5L X60 steels and 7075‐T6 aluminum alloy were used in the experimental verification of the models. Samples were extracted from materials of the same heat, in order to have a reliable comparison. The experimental results are better predicted by the models that use the plastic part of Coffin–Manson's equation to calculate the fatigue life of small volume elements ahead of the crack tip, and expressions of the HRR type to represent the elastic–plastic strain amplitude in the cyclic plastic zone.  相似文献   

8.
Fatigue crack growth has been studied under fully reversed torsional loading (R = ?1) using AISI 4340 steel, quenched and tempered at 200°, 400° and 650°C. Only at high stress intensity ranges and short crack lengths are all specimens characterized by a microscopically flat Mode III (anti-plane shear) fracture surface. At lower stress intensities and larger crack lengths, fracture surfaces show a local hill-and-valley morphology with Mode I, 45° branch cracks. Since such surfaces are in sliding contact, friction, abrasion and mutual support of parts of the surface can occur readily during Mode III crack advance. Without significant axial loads superimposed on the torsional loading to minimize this interference, Mode III crack growth rates cannot be uniquely characterized by driving force parameters, such as ΔKIII and ΔCTDIII, computed from applied loads and crack length values. However, for short crack lengths (?0.4 mm), where such crack surface interference is minimal in this steel, it is found that the crack growth rate per cycle in Mode III is only a factor of four smaller than equivalent behaviour in Mode I, for the 650°C temper at ΔKIII = 45 MPa m12.  相似文献   

9.
In modern electronic packaging, especially surface mount technology (SMT), thermal strain is usually induced between components during processing, and in service, by a mismatch in the thermal expansion coefficients. Since solder has a low melting temperature and is softer than other components in electronic packaging, most of the cyclic stresses and strains take place in the solder. Fatigue crack initiation and fatigue crack propagation are likely to occur in the solder even when the cyclic stress is below the yield stress. It is an objective of this research to study the behaviour of fatigue crack initiation and propagation in both lead‐containing solder (63Sn‐37Pb), and lead‐free solders (Sn‐3.5Ag). The effect of alloying (Cu and Bi addition), frequency, tensile hold time and temperature on low cycle fatigue (LCF) behaviour of the solders is discussed. Mechanisms of LCF crack initiation and propagation are proposed and LCF life prediction, based on the various models, is carried out.  相似文献   

10.
A multiparameter approach is proposed for the characterization of fatigue crack growth in metallic materials. The model assesses the combined effects of identifiable multiple variables that can contribute to fatigue crack growth. Mathematical expressions are presented for the determination of fatigue crack growth rates, d a /d N , as functions of multiple variables, including stress intensity factor range, Δ K , stress ratio, R , crack closure stress intensity factor, K cl , the maximum stress intensity factor K max , nominal specimen thickness, t , frequency, Ω , and temperature, T . A generalized empirical methodology is proposed for the estimation of fatigue crack growth rates as a function of these variables. The validity of the methodology is then verified by making appropriate comparisons between predicted and measured fatigue crack growth data obtained from experiments on Ti–6Al–4V. The effects of stress ratio and specimen thickness on fatigue crack growth rates are then rationalized by crack closure considerations. The multiparameter model is also shown to provide a good fit to experimental data obtained for HY-80 steel, Inconel 718 polycrystal and Inconel 718 single crystal. Finally, the implications of the results are discussed for the prediction of fatigue crack growth and fatigue life.  相似文献   

11.
An important structural component of the Westinghouse Large Coil Programme superconducting magnet is the JBK-75 (modified A-286) stainless steel conductor sheath. Because the presence of pre-existing cracks or flaws in the conductor sheath is a potential possibility, the structural reliability of the conductor sheath would be enhanced if a threshold level of stress intensity range (ΔKth) was established below which fatigue crack growth would not occur. Consequently, near-threshold fatigue growth rate data were generated at two load ratios on JBK-75 stainless steel at room and cryogenic temperatures. No load ratio effect on near-threshold fatigue crack growth rate was observed at cryogenic temperatures.  相似文献   

12.
Fatigue crack growth of ABS EH36 steel under spectrum loading intended to simulate sea loading of offshore structures in the North Sea was studied using fracture mechanics. A digital simulation technique was used to generate samples of load/time histories from a power spectrum characteristic of the North Sea environment. In constant load-amplitude tests, the effects of specimen orientation and stress ratio on fatigue crack growth rates were found to be negligible in the range 2 × 10?5 to 10?3 mm/cycle. Fatigue crack growth rates in a 3.5% NaCl solution were two to five times faster than those observed in air in the stress intensity range 25 to 60 MPa √m. The average fatigue crack growth rates under spectrum loading and constant-amplitude loading were in excellent agreement when the fatigue crack growth rate was plotted as a function of the appropriately defined equivalent stress intensity range. This procedure is equivalent to applying Miner's summation rule in fatigue life calculations.  相似文献   

13.
Fatigue crack growth (FCG) behaviour and its characteristics following tensile overloads were investigated for AISI 304 stainless steel in three different atmospheres; namely dry argon, moist air and hydrogen. The FCG tests were performed by MTS 810 servohydraulic machine. CT specimens were used for the tests and crack closure measurements were made using an extensometer. FCG rates of 304 stainless steel at both dry argon and moist air atmospheres have shown almost the same behaviour. In other words, the effect of moisture on FCG of this material is very small. However, in a hydrogen atmosphere, the material showed considerably higher crack growth rate in all regimes. In general, for all environments, the initial effect of overloads was to accelerate the FCG rate for a short distance (less than a mm) after which retardation occurred for a considerable amount of time. The main causes for retardation were found as crack blunting and a long reinitiation period for the fatigue crack. Regarding the environmental effect, the overload retardation was lowest in a hydrogen atmosphere. This low degree of retardation was explained by a hydrogen embrittlement mechanism. In a general sense, hydrogen may cause a different crack closure mechanism and hydrogen induced crack closure has come in to the picture. Scanning electron microscope and light microscope examinations agreed well with the above results.  相似文献   

14.
Fatigue crack nucleation and growth in filled natural rubber   总被引:1,自引:0,他引:1  
Rubber components subjected to fluctuating loads often fail due to nucleation and the growth of defects or cracks. The prevention of such failures depends upon an understanding of the mechanics underlying the failure process. This investigation explores the nucleation and growth of cracks in filled natural rubber. Both fatigue macro‐crack nucleation as well as fatigue crack growth experiments were conducted using simple tension and planar tension specimens, respectively. Crack nucleation as well as crack growth life prediction analysis approaches were used to correlate the experimental data. Several aspects of the fatigue process, such as failure mode and the effects of R ratio (minimum strain) on fatigue life, are also discussed. It is shown that a small positive R ratio can have a significant beneficial effect on fatigue life and crack growth rate, particularly at low strain range.  相似文献   

15.
Fatigue crack growth with fiber failure in metal-matrix composites   总被引:2,自引:0,他引:2  
Crack growth during the fatigue of fiber-reinforced metal-matrix composites can be predicted analytically by determining the reduction in the crack tip stress intensity range resulting from fiber bridging. Various canonical functions exist that relate the crack tip stress intensity range to bridged crack geometries and loading for both infinite and finite width specimens; however, comprehensive crack growth predictions incorporating fiber failure require knowledge of the maximum fiber stress in the bridged zone for all notch sizes and crack lengths. Previous modeling efforts have been extended to predict complete growth curves with fiber failure for specimens of finite width. Functions for maximum fiber stresses in the bridged zone are presented here for a center crack in tension and edge cracks in tension and bending. The rapid increase in crack growth when fibers fail emphasizes the importance of determining the loads and notch sizes that mark the beginning of fiber failure. Critical loads for given notch sizes and fiber strengths are easily determined for finite width specimens using the functions presented in this work.  相似文献   

16.
A cumulative model of fatigue crack growth   总被引:1,自引:0,他引:1  
A model of fatigue crack growth based on an analysis of elastic/plastic stress and strain at the crack tip is presented. It is shown that the fatigue crack growth rate can be calculated by means of the local stress/strain at the crack tip. The local stress and strain calculations are based on the general solutions given by Hutchinson, Rice and Rosengren. It is assumed that a small highly strained area existing at the crack tip is responsible for the fatigue crack growth. It is also assumed that the fatigue crack growth rate depends mainly on the width, x1, of the highly strained zone and on the strain range, Δ?1, within the zone. A relationship between stress intensity factor K and the local strain and stress has been developed. It is possible to calculate the local strain for a variety of crack problems. Then, the number of cycles N1 required for material failure inside the highly strained zone is calculated. The fatigue crack growth rate is calculated as the ratio x1N1.The calculated fatigue crack growth rates were compared to the experimental ones. Two alloys steels and two aluminium alloys were analyzed. Good agreement between experimental and theoretical results is obtained.  相似文献   

17.
In order to understand the effects of annealing and quenching on fatigue behaviour in type 444 stainless steel, fully reversed axial fatigue tests have been performed using smooth specimens of heat‐treated materials in laboratory air and 3%NaCl aqueous solution. Three materials subjected to different heat treatments, annealing at 960 and 1000 °C, and water‐cooling at 960 °C, were prepared. In laboratory air, the fatigue limit of the annealed specimens was lower than that of the as‐received specimen and decreased with increasing annealing temperature. The subsequent grain coarsening from the heat treatments was primarily responsible for the lower fatigue strength in the annealed specimens. The fatigue strength of the water‐cooled specimen was lower than that of the corresponding annealed specimen. In the annealed specimens, cracks were generated within ferritic grains, while in the water‐cooled specimen, at or near grain boundaries. In 3%NaCl solution, the fatigue strengths of all specimens decreased compared with those in laboratory air. Only in the water‐cooled specimens, crack initiation at grain boundary and intergranular crack growth were observed, indicating the most sensitive to corrosion environment.  相似文献   

18.
19.
This paper presents a numerical prediction model of mixed‐mode crack fatigue growth in a plane elastic plate. It involves a formulations of fatigue growth of multiple crack tips under mixed‐mode loading and a displacement discontinuity method with crack‐tip elements (a boundary element method) proposed recently by Yan is extended to analyse the fatigue growth process of multiple crack tips. Due to an intrinsic feature of the boundary element method, a general growth problem of multiple cracks can be solved in a single‐region formulation. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not necessary. Crack extension is conveniently modelled by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characters of some related elements are adjusted according to the manner in which the boundary element method is implemented. As an example, the present numerical approach is used to analyse the fatigue growth of a centre slant crack in a rectangular plate. The numerical results illustrate the validation of the numerical prediction model and can reveal the effect of the geometry of the cracked plate on the fatigue growth.  相似文献   

20.
A series of axial tensile fatigue tests (R = 0.1) was carried out to investigate the initiation and the growth behaviours of very small surface fatigue cracks under two different surface conditions (viz. smooth and pitted surfaces) of AISI 304 stainless steel at room temperature. This paper deals with both of the two approaches regarding the analysis of fatigue: the approach based on the concept of fracture mechanics and low cycle fatigue. In particular, both the initiation and growth of cracks and the coalescence of small cracks by fatigue in the specimen have been investigated by the methods of surface replicas and photomicrographs. Quantitative information such as the initiation period, growth and coalescence behaviours of small cracks, and crack growth properties were systematically obtained. The results show that the accurate determination of these parameters is critical for the application of fracture mechanics to fatigue life assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号