首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
利用微等离子体氧化技术,在7075铝合金表面原位生成了陶瓷层.采用正交实验法确定了在硼酸盐体系中进行微等离子体氧化的最佳电解液配方,通过SEM及XRD分析了陶瓷层的形貌及相组成.结果表明:陶瓷层硬度可达到812HV0.1;陶瓷层表面形貌均匀,膜层致密,主要由γ-Al2O3组成.  相似文献   

2.
在Na_2SiO_3-NaOH电解液体系下,对2024铝合金进行微等离子体氧化处理。利用L9(33)正交试验法优化出最佳的电解液配方,研究了在此电解液配方下制备出的陶瓷膜层微观形貌、厚度、显微硬度、表面粗糙度、耐蚀性及其相组成。结果表明,用Na_2SiO_3浓度为10 g/L、NaOH浓度为1.5 g/L、抑弧剂浓度为6 g/L的配方制备出的陶瓷层表面微孔均匀、膜层致密,陶瓷层厚度达44.5μm、显微硬度达1 041 HV、耐蚀性较基体的有较大幅度提高、粗糙度值小于3.5μm、陶瓷层主要由γ-Al_2O_3构成。  相似文献   

3.
在NaAlO2-NaOH混合体系下,对7075铝合金进行等离子体电解氧化处理,制备出不同正/负占空比下的陶瓷层,并研究了占空比对陶瓷层厚度、显微硬度、表面和截面形貌及相组成的影响。结果表明,在正占空比15%、负占空比10%时制备出的陶瓷层连续均匀致密,其显微硬度达到1080。  相似文献   

4.
采用微等离子体氧化法在NaAlO2溶液中对7075铝合金进行表面处理,研究了阳极电流密度及阴/阳极电流密度比对陶瓷层的厚度、硬度、表面及截面形貌、相组成等的影响。结果表明:陶瓷层的厚度、显微硬度及微观形貌与阳极电流密度及阴/阳极电流密度比密切相关,在阳极电流密度为10A/dm2及阴/阳极电流密度比为0.7时,陶瓷层显示出较好的表面及截面形貌。  相似文献   

5.
为探究工艺参数对铝合金微弧氧化膜层中蛇纹石含量的影响,采用微弧氧化技术,分别在双向恒压、单向恒压和单向恒流模式下,在添加蛇纹石微纳米颗粒的电解液中进行试验,在ZL109铝合金表面原位生长陶瓷层。采用SEM、EDS及XRD对膜层进行分析。结果表明:在单向恒压和单向恒流模式下制得的微弧氧化膜层的蛇纹石含量相比双向恒压模式分别提高了92%和113%;微弧氧化膜层中的蛇纹石含量随电流的增加而增加,随频率的增加而降低,随电解液中蛇纹石微纳米颗粒浓度的增加而增加;试验过程中试样与电解槽之间的电场产生的电泳效应,使得在电解液中呈电负性的蛇纹石微纳米颗粒移动到试样表面,在接触到试样表面熔融态的高温氧化物时,蛇纹石微纳米颗粒表面熔化而粘合在试样表面,经电解液冷却复合到了微弧氧化膜层中。  相似文献   

6.
弱酸性介质中铝合金微弧氧化研究   总被引:1,自引:0,他引:1  
使用自制100kW微弧氧化设备,在弱酸性电解液(pH=6.5~7)介质中进行微弧氧化试验。在铝合金表面制备出了致密、光滑、高硬度的陶瓷层。研究了陶瓷层的生长规律以及氧化电压随时间的变化规律。研究表明,在弱酸性介质中,同样可以发生微等离子体放电现象;对弱酸性介质中的微弧氧化而言,初期的电压变化规律同碱性条件下基本一致;中期生长速度明显低于碱性介质下的速度;末期生长速度的降低较碱性介质中的快。  相似文献   

7.
铝合金表面微弧氧化陶瓷层耐磨性   总被引:1,自引:1,他引:0  
利用微弧氧化技术在7075铝合金表面形成微弧氧化陶瓷膜层,通过SEM、XRD手段分析了微弧氧化陶瓷层的显微结构、表面形貌和相组成,并在HIT-Ⅱ摩擦磨损试验机上测试了陶瓷膜层的摩擦学性能.结果表明:7075铝合金表面的微弧氧化陶瓷膜层由疏松层、致密层构成,其相组成主要是α-Al2O3和γ-Al2O3两相;氧化陶瓷层与基体结合良好,厚度为25~45μm,表面硬度可达到1900HV0.1左右;微弧氧化表面处理技术可以显著提高铝合金的表面耐磨性,在与GCr15钢球对磨时,膜层具有较低的磨损率,但摩擦因数相对较高.  相似文献   

8.
为进一步提高铝合金表面微弧氧化陶瓷层的摩擦磨损性能,在硅酸盐体系的电解液中加入一定量的导电炭黑,对5A06铝合金试样进行不同时间的微弧氧化处理。利用X射线衍射仪、扫描电子显微镜、显微硬度仪等分析5A06铝合金微弧氧化陶瓷层的物相组成、显微组织及显微硬度,并用摩擦磨损试验机对不同微弧氧化时间的陶瓷层进行磨损性能研究。结果表明,在微弧氧化电解液中加入少量导电炭黑后,制备的陶瓷层中含有一定量的碳元素,且随微弧氧化时间增加,陶瓷层中的含碳量先增后减,在干摩擦磨损条件下,其摩擦因数逐渐减小,陶瓷层的减摩、耐磨性得到有效提高。  相似文献   

9.
采用微弧氧化技术,在电解质溶液中添加蛇纹石微纳米颗粒,在ZL109铝合金表面原位生长陶瓷层。对未添加和添加蛇纹石微纳米颗粒制得的微弧氧化陶瓷膜层进行扫描电镜(SEM)、能谱(EDS)及X射线衍射(XRD)分析,并与铸铁试样进行摩擦磨损试验,探究蛇纹石微纳米颗粒对铝合金微弧氧化陶瓷膜层成分及摩擦学性能的影响。结果表明:在电解液中添加蛇纹石微纳米颗粒改变了微弧氧化陶瓷膜层的元素组成和相成分,在摩擦磨损试验中,微弧氧化膜层中的蛇纹石在摩擦能的作用下诱发了铸铁销表面的内氧化反应,在摩擦接触微区形成了Mg Si O3、Fe2O3及Fe3O4复合陶瓷表面自修复层,提高了铸铁销表面显微硬度,降低了摩擦磨损过程中的摩擦系数和铸铁销的磨损率。  相似文献   

10.
采用微弧氧化技术,在电解质溶液中添加蛇纹石微纳米颗粒,在ZL109铝合金表面原位生长陶瓷层。对未添加和添加蛇纹石微纳米颗粒制得的微弧氧化陶瓷膜层进行扫描电镜(SEM)、能谱(EDS)及X射线衍射(XRD)分析,并与铸铁试样进行摩擦磨损试验,探究蛇纹石微纳米颗粒对铝合金微弧氧化陶瓷膜层成分及摩擦学性能的影响。结果表明:在电解液中添加蛇纹石微纳米颗粒改变了微弧氧化陶瓷膜层的元素组成和相成分,在摩擦磨损试验中,微弧氧化膜层中的蛇纹石在摩擦能的作用下诱发了铸铁销表面的内氧化反应,在摩擦接触微区形成了Mg Si O3、Fe2O3及Fe3O4复合陶瓷表面自修复层,提高了铸铁销表面显微硬度,降低了摩擦磨损过程中的摩擦系数和铸铁销的磨损率。  相似文献   

11.
Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.  相似文献   

12.
在电解液中加入不同浓度石墨烯添加剂,通过微弧氧化在ZL109铝合金表面制备了石墨烯复合陶瓷膜,通过测厚仪和硬度计对膜层进行检测;然后对最佳浓度处理试件进行摩擦磨损试验,分析其摩擦因数、表面形貌以评价石墨烯添加剂对微弧氧化复合陶瓷膜摩擦性能的影响和作用机理。结果表明:石墨烯添加剂的加入使微弧氧化膜层具有更加优异表面性能和抗磨减摩性能,在浓度为6 g/L时膜层厚度达29.68 μm,硬度达到990.12 HV0.3,摩擦因数稳定在0.19,较普通陶瓷膜摩擦因数显著降低,达34.48%。在磨擦过程中,石墨烯对摩擦副表面的凹槽和划痕进行了填充,表面珩磨纹更加细密;同时,复合添加剂在磨擦过程中形成了C元素薄膜,起到了自修复作用。  相似文献   

13.
微等离子体电解氧化是在阳极氧化基础上发展起来的直接在轻合金表面原位生成γ-Al2 O3和α-Al2 O3陶瓷质膜的一项表面工程新技术.α-Al2 O3对陶瓷质膜层的性能起决定性作用,最大限度地促进α-Al2 O3的形成,是改善铝合金表面综合性能的关键.经过对国内近20个单位的调研,发现该技术在军工、航空、航天、机械等领域有着迫切的需求和广泛的应用前景,有望部分替代硬质氧化膜实现大规模生产.本文从基体材料、溶液特性及电参数三方面分析铝合金微等离子体氧化膜层的影响因素,重点分析基体合金元素对陶瓷质膜层的影响.指出该技术在高强度铝合金应用领域的发展方向并对其前景进行了展望.  相似文献   

14.
在交流条件下利用微等离子体氧化技术合成了氧化铝陶瓷涂层。XRD分析结果显示,涂层α-Al2O3相与y-Al2O3相的含量随反应时间而变化。氧化2.5h后可以得到由单一的α-Al2O3相组成的涂层。陶瓷涂层厚度的生长速率大约为0,7μm/min;在135min之后,涂层的厚度基本小变。氧化最初的15min之内,涂层的表而密度仅为0.088mg/cm^2,然后表面密度增大。在氧化15min~60min之内,表而密度(y)与氧化时间呈直线关系。在氧化60min之后,y的增长速率逐渐减小。  相似文献   

15.
目的改善铝合金的综合性能,尤其是耐磨性。方法采用微弧氧化技术,在铝合金表面制备具有自润滑效果的微弧氧化陶瓷膜层。通过分析电解参数(电流密度、频级和能级)对微弧氧化陶瓷膜耐磨性的影响,以及添加剂石墨对陶瓷膜厚度、表面形貌、相组成、耐磨性和耐蚀性的影响,探索可以提高铝合金表面微弧氧化陶瓷膜综合性能的电解参数,研究石墨在铝合金微弧氧化中所起的作用。结果确定了最佳电解参数。添加剂石墨不仅降低了铝合金陶瓷膜的摩擦系数,同时也提高了铝合金的耐蚀性。结论在铝合金微弧氧化中,石墨的自润滑特性和超高的导电性促进了铝合金在微弧氧化过程中成膜反应的进行,增加了陶瓷膜层的厚度,同时对试样表面有光滑、整平的作用。  相似文献   

16.
选用铝酸钠体系对7075铝合金进行微弧氧化处理。对不同铝酸钠浓度下制备出的膜层厚度及显微硬度进行测试,并借助扫描电镜及金相显微镜对膜层微观形貌进行分析。结果表明:不同铝酸钠浓度下制备出的膜层均呈"火山喷射口"状凸起形貌,与基体之间呈微区范围内的锯齿状冶金结合,膜层连续均匀,铝酸钠质量浓度为9 g/L时,膜层显微硬度高达1080HV0.1。  相似文献   

17.
目的研究微弧氧化过程的温度场分布情况对成膜过程及表面形貌的影响。方法以7075铝合金微弧氧化过程中的一个放电通道为研究对象,基于多物理场仿真软件COMSOL Mutiphysics建立了微弧氧化传热过程的数学模型及物理模型。基于有限元法求解出微弧氧化成膜过程的温度场分布,选择特定参考线及参考点,绘制了温度-时间曲线。选择0、100、500、1000μs四个关键时间点,绘制了对应的温度-纵向深度曲线、温度分布云图及温度梯度分布云图,并探究其对陶瓷层表面形貌的影响。结果在0~100μs时,放电通道区域温度下降速率最快;在100~500μs时,温度下降速率逐渐减小;在500~1000μs时,温度下降速率最小且趋于不变。相对于放电通道中心区域,靠近氧化铝膜层-铝合金基体界面区域温度下降速率较快,温度梯度较大;在0、100、500、1000μs时,最高温度所在位置的纵向深度依次为93、20、26、38μm,呈现先减小后增大的趋势。结论电解液对微弧氧化过程的冷却作用主要集中于放电通道形成后的100μs内。除电解液外,氧化铝膜层-铝合金基体界面在微弧氧化成膜过程中有一定的冷却作用,而放电通道各区域冷却速率不均衡是氧化膜表面形成火山口状孔洞的主要原因。  相似文献   

18.
铝合金表面减摩涂层设计和制备是改善铝合金构件摩擦性能的关键技术之一。对于目前铝合金结构件易磨损的问题,本研究采用微弧氧化一步法在6063铝合金表面原位合成纳米MoS2,制备具有减摩作用的MoS2/Al2O3复合陶瓷涂层;讨论了硫盐浓度对涂层成分、形貌及摩擦性能的影响,分析了涂层减摩机理。结果表明:通过微弧氧化在6063铝合金表面成功制备出了含有MoS2的自润滑复合陶瓷涂层;涂层的摩擦系数随着硫盐浓度的升高呈现先下降后上升的趋势,当电解液中硫盐浓度为15g/L时涂层的摩擦系数为0.15,较常规微弧氧化涂层降低了76%。涂层中的MoS2分布在涂层的表面和内部,在与摩擦副接触与挤压的作用下形成均匀分布的MoS2润滑膜,表现出良好的减摩性能。  相似文献   

19.
采用磷酸盐和硅酸盐体系的电解液分别对锆-4合金进行微弧氧化,对比分析不同体系的电解液中所制备陶瓷层的组织形貌、相结构及耐磨性能。结果表明:在磷酸盐体系电解液中形成的陶瓷层,其致密层厚度约占总膜层的2/3,高于硅酸盐体系的相应值;陶瓷层表面呈典型火山状,比硅酸盐体系的陶瓷层粗糙,但孔洞数量少,内部组织也比硅酸盐体系的陶瓷层致密;两体系电解液中形成的陶瓷层的组成相均主要为t-ZrO2和m-ZrO2,但磷酸盐体系下陶瓷层中m-ZrO2相的质量分数明显要高,而硅酸盐体系中陶瓷层的外侧可能形成硅酸锆。锆合金经微弧氧化处理后,耐磨性能大幅提高,磷酸盐体系中陶瓷层的耐磨性能在总体上优于硅酸盐体系中的陶瓷层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号