首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
HPMo-loaded Y-zeolites were prepared for the removal of trace olefins from aromatic hydrocarbons. The temperature of calcination and the proportion of phospho-molybdic acid in the catalyst were studied. The catalytic activity for olefins removal and the service life of the catalyst were tested in a fixed bed microreactor. The results showed that the catalyst containing 3% phospho-molybdic acid, which was calcined at 550℃, demonstrated the best activity for olefins removal. The catalyst could be regenerated and could perform still very well. Catalyst characterization was performed by XRD and measured by pyridine-FTIR spectrometry. The test results indicated that the activity of the catalyst was related with the effect of acid concentration and acid strength. Besides, the deactivation of the catalyst was associated with the formation of coke deposits and the deactivated catalyst could recover its activity by oxidation with air under a proper temperature.  相似文献   

2.
A novel environmentally friendly sulfiding agent SZ 54 was for the first time used for presulfidation of the catalyst in the 2 Mt/a hydrofining unit at Zhenhai Refining and Chemical Company. The application results had shown that the sulfiding agent SZ54 had low smell, high flash point, and safe and environmentally friendly features. The lower decomposition temperature and stepwise chemical decomposition characteristics of this reagent can effectively avoid the reduction of metals and improve sulfur adsorption to meet the needs for sulfidizing the hydrofining catalyst, and is a good reagent worthy of extended application.  相似文献   

3.
In this article, residual oil hydroconversion was studied in slurry phase in the presence of fine solid Ni Mo/γ-Al2O3 catalyst and the effects of operating conditions were carefully studied. The results showed that residue conversion was only affected by the reaction temperature and reaction time. The coke yield increased with a higher reaction temperature, a bigger catalyst particle size, a longer reaction time, a lower initial hydrogen pressure and a lower catalyst concentration. Heteroatoms removal rate increased with a higher reaction temperature, a longer reaction time, a higher initial hydrogen pressure, a higher catalyst concentration, and a smaller catalyst particle size. The role of catalyst in the slurry bed technology was discussed and its function could be stated as follows: the metal was applied to activate the hydrogen atoms for removing heteroatoms and saturating aromatics, while the support of the catalyst was used to prevent the mesophase coalescence for reducing coke formation.  相似文献   

4.
The conversion of methanol to olefins (MTO) over the SAPO-34 catalyst in fixed-bed microreactor was studied. The effect of reaction temperatures for methanol conversion to olefins and byproducts was investigated. A temperature of 425℃ appeared to be the optimum one suitable for conversion of methanol to olefins. Since the presence of water could increase the olefins selectivity, the methanol conversion reactions with mixed water/methanol feed were also studied. The effect of weight hourly space velocity on conversion of methanol was also studied. The results indicated that the olefins selectivity was significantly increased as WHSV increased till approximately 7.69 h^-1 then it began to level off. Different factors affecting the catalyst deactivation rate was studied, showing that the catalyst deactivation time was dependent on reaction conditions, and temperatures higher and lower than the optimal one made the catalyst deactivation faster. Adding water to methanol could slow down the catalyst deactivation rate.  相似文献   

5.
A bifunctional catalyst Pt/HY-β was prepared from a bimicroporous composite zeolite Y-β. Characterization results showed that the specific surface area, pore volume, and acid amount of the catalyst Pt/HY-β all decreased compared to the original zeolite. The catalytic performance of this catalyst in n-octane hydroisomerization was investigated in a fixed bed stainless steel tubular reactor. The results showed that at a hydrogen/n-octane volume ratio of 1000, pressure of 0.6 MPa, temperature of 230 ℃ and LHSV of 3 h^-1, the conversion of n-octane, yield of liquid, hydrocracking rate and yield of iso-octane were 52.32%, 88.66%, 12.60%, 39.51%, respectively.  相似文献   

6.
A newly developed catalyst type DVR-1 for catalytic cracking of Daqing vacuum resid was put into use in a commercial VRFCC unit,This catalyst features uniquely active matrix and modified ultra-stable zeolite.The commercial application results show that the DVR-1 type catalyst has the advantage of high heavy oil conversion,good metal tolerance nd gooed stability for catalyst regeneration,The FCC tests have shown Favorable product distribution,acceptable product quality and enormaous economic benefits whe processing the feedstock containin 75%-100% Daqing VR.  相似文献   

7.
The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al_2O_3, was compared for reverse water gas shift(RWGS) reaction. The structures of the precursor and the catalysts were studied using X-ray diffraction(XRD), Brunauer–Emmett–Teller(BET) analysis, inductively coupled plasma-atomic emission spectrometry(ICP-AES), CO chemisorption, temperature programmed reduction of hydrogen(H_2-TPR) and scanning electron microscopy(SEM) techniques. The activity of Fe-Mo and Co-Mo catalysts was compared in a fixed bed reactor at different temperatures. It is shown that the Co-Mo catalyst has higher CO_2 conversion at all temperature level. The time-on-stream(TOS) analysis of the activity of catalysts for the RWGS reaction was carried out over a continuous period of 60h for both catalysts. The Fe-Mo/Al_2O_3 catalyst exhibits good stability within a period of 60h, however, the Co-Mo/Al_2O_3 is gradually deactivated after 50h of reaction time. Existence of(Fe_2(MoO4_))_3 phase in Fe-Mo/Al_2O_3 catalyst makes this catalyst more stable for RWGS reaction.  相似文献   

8.
A decorated ruthenium catalyst was prepared by the coprecipitation method and used for the selective hydrogenation of maleic anhydride(MA) to γ-butyrolactone(GBL). The as-prepared catalyst was characterized by XRD, TGDTG and N2 adsorption techniques. The characterization tests revealed that the catalyst carrier was composed of monoclinic zirconia(m-ZrO2) and hydroxyl cobalt oxide(CoO(OH)). The hydrogenation results showed that the content of CoO(OH), the reaction temperature, the hydrogen pressure and the reaction time significantly affected the catalytic selectivity to GBL. The promotional effect of CoO(OH) was remarkable, which led to an obvious increase in GBL selectivity. An 100% MA conversion and 92.0% selectivity to GBL were achieved over the Ru/ZrO2-CoO(OH)(35%) catalyst in water solvent under the conditions involving a reaction temperature of 180 ℃, a hydrogen pressure of 3.0 MPa, and a reaction time of 6 h.  相似文献   

9.
Conversion of Methanol to Olefins (MTO) under different reaction conditions was experimentally investigated over different catalysts, and comparison was made between the SAPO-34 and GOR-MLC catalysts. Optimization of reaction conditions has been explored. Conversion of methanol to olefins over these catalysts under different reaction temperatures was experimentally studied. In a fixed bed micro-reactor, the influence of temperature was found to be one of the major factors. For both catalysts the olefins yield was increased significantly when water was added to the methanol feed. A temperature range of 460 480℃ appeared to be the optimum range suitable for methanol conversion with appropriate catalyst activity and C2-C3 olefins yield. Some other hydrocarbons appeared during the MTO reaction in the presence of the SAPO-34 catalyst, while a lot of dimethylether was formed when the GOR-MLC catalyst was used. In the course of the MTO reaction, the GOR-MLC catalyst was found to have a faster catalyst deactivation rate compared to the SAPO-34 catalyst.  相似文献   

10.
This paper refers to the results of study and development of benzene and polyethylbenzene transalkylation catalyst (type AEB-1) for syntthesis of ethylbenzene,The effect of reaction conditions on the reaction performance of the catalyst was investigated in the pressurized microreactor CDS-900,A transalyltaion catalst with high activity,good selectivity and stability was developed following a 2000-hour test on the activity and stabiity of the catalyst .The preparation of this catatlyst was implemented in pilot scale and this catalyst was tested for activity and stability in a 150 t/a pilot unit for production of etheylbenzene ,The test results have shown that this transalkyliation catalyst has excellent activity ,seletivity and stability,The operation of pilot test unit ran smoothly and the process schemis is viable.  相似文献   

11.
Reduction of sulfur content in FCC gasoline was studied in a fixed fluid bed (FFB) unit by using metal-modified LV-23 FCC catalyst. The results showed that the sulfur content in FCC gasoline could be reduced with LV-23 catalyst modified with zinc, palladium, zinc-palladium, zinc-cobalt, and zinc-nickel. Among these metals or metal combinations, palladium-containing catalyst was the most effective. Desulfufization of the heavy fraction of FCC gasoline was more effective than full-range gasoline under the same conditions with palladium-containing catalysts. A high reaction temperature was favorable to desulfurization, but it would reduce the yield of liquid product. After desulfurization reaction, the olefm content of product gasoline decreased while the aromatic and iso-alkane contents increased. Removal of thiophene and benzothiophene is higher.  相似文献   

12.
Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were investigated. Hydrocarbon composition of gasoline was analyzed by gas chromatograph. Experimental results showed that conversion of cycle oil was low on account of its poor crackability performance, and the effect of reaction conditions on gasoline yield was obvi- ous. The paraffin content was very high in gasoline. Based on the experimental yields under different reaction conditions, a model for prediction of gasoline and diesel yields was established by radial basis function neural network (RBFNN). In the model, the product yield was viewed as function of reaction conditions. Particle swarm optimization (PSO) algorithm with global search capability was used to obtain optimal conditions for a highest yield of light oil. The results showed that the yield of gasoline and diesel predicted by RBF neural network agreed well with the experimental values. The optimized reac- tion conditions were obtained at a reaction temperature of around 520 ~C, a catalyst to oil ratio of 7.4 and a space velocity of 8 h~. The predicted total yield of gasoline and diesel reached 42.2% under optimized conditions.  相似文献   

13.
1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized with GC technique. Furthermore, the life of immobilized catalyst was tested and the mechanism of catalyst deactivation was discussed. The results showed that with an increasing temperature, the PAO yield increased and the kinematic viscosity of oil decreased. The GC results indicated that the synthesized PAO was a mixture consisting of dimers, trimers, tetramers and pentamers. The results of chloride content measurements and BET tests showed that catalyst deactivation could be mainly attributed to the loss of active components.  相似文献   

14.
This article mainly worked on methods to reduce side reactions of the de-ethylating type catalyst for xylene isomerization. In laboratory the de-ethylating type catalyst for xylene isomerization was subjected to steam treatment at different temperatures and durations to achieve dealumination of the ZSM-5 zeolite to some extent, which could affect the change in BrФnsted acid content to decrease xylene loss along with reduction of side reactions. Test results showed that the degree for reducing side reactions by steam treatment depended upon two important parameters-treating temperature and duration. The optimal condition required treating the catalyst at 500℃ for 8 hours.  相似文献   

15.
The influence of operating parameters and type of zeolite catalysts on formation of ethylene and propylene during catalytic pyrolysis of methylcyclohexane (MCH) was studied in a laboratory fixed fluidized bed reactor. The results indicated that higher reaction temperature and lower WHSV tended to produce more ethylene and propylene, among which the reaction temperature was an important factor influencing the ethylene formation. Compared with the FAU and BEA type zeolites, the MFI structured zeolite catalyst, thanks to more acid sites and smaller pore diameter of the catalyst, was conducive to the formation of ethylene and propylene. The protonation occurred on different C—C bonds and C—H bonds in the carbon chain of MCH led to different product slates, and the protonation on C—C bonds located at naphthenic ring was favorable to the formation of ethylene and propylene.  相似文献   

16.
The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction(HTS)with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated.XRD,BET and particle size distribution(PSD)were used to characterize the prepared catalysts.It was found that the catalyst crystals were allγ-Fe 2 O3,and the intermediate of the catalyst after aging was Fe3O4.The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process.The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts.  相似文献   

17.
The technical development project assigned by SINOPEC— “Commercial test of the SHP-02/F catalyst for two-stage hydrotreating of pyrolysis gasoline”-- jointly performed by SINOPEC Shanghai Petrochemical Research Institute and Zhongyuan Petrochemical Company had passed the techni- cal appraisal organized by SINOPEC Science and Technol- ogy Development Division. The SHP-02/F catalyst used in the combined bed has the advantages of both CoMo and NiMo catalyst series with outstan…  相似文献   

18.
Biodiesel is an alternative renewable fuel which is produced by using biomass resources. Its physicochemical properties are close to those of the petroleum diesel fuel. This study highlights biodiesel production from safflower seed oil. The main aim of this experimental work is to optimize the process parameters, namely the methanolto-oil molar ratio, catalyst concentration, reaction time and reaction temperature for biodiesel production. The Taguchi robust design approach was used with an L9 orthogonal array to analyze the influence of process factors on performance parameters. The results showed that the optimum yield of biodiesel was 93.8% with viscosity 5.60 c St, with a methanol-to-oil molar ratio of 4:1, catalyst concentration of 1.5 wt%, reaction time of 90 min and reaction temperature of 60 ℃. The catalyst concentration was found to be the most influencing parameter which contributed 51.1% and 50.8% of the total effect on the yield of biodiesel, Y_1, and viscosity of biodiesel, Y_2, respectively.  相似文献   

19.
C5/C6 alkane hydroisomerization is one of the most economical technologies for octane enhancement and has potential application in China in the next decade. The work about choice of hydroisomexization catalyst systems and scaleup in catalyst preparation was presented. Performance and regeneration behaviors tested in different laboratory reactors and a 1000 t/a pilot plant were discussed, which offers the information for commercial use of this process. Mechanism for coke formation was also proposed.  相似文献   

20.
After successful bid by the SINOPEC Shanghai Petrochemical Research Institute (SPRI) for licensing the acrylonitrile technology to Belarus, another good news was also transmitted to SPRI. The toluene disproportionation catalyst manufactured according to the technology developed by SPRI had been successfully put on stream at the first attempt at the Belorussian Naftan Company on September 14,2007. The reaction temperature using the said catalyst was lower by 50℃ as compared to the overseas catalyst that was applied by the Naftan Company previously, indicating to the excellent performance of the said catalyst. This successful commissioning of the process unit has laid a good foundation for expansion of SPRI's global market share.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号