首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,25-dihydroxyvitamin D3 (1,25(OH)2D3) receptors (VDR) are expressed in multiple tissues within the body. VDR levels are increased by 1,25(OH)2D3 in intestine and kidney and in numerous cell models. The ability of 1,25(OH)2D3 to affect VDR levels in other target tissues in vivo was studied by assessing VDR levels by the 3H-1,25(OH)2D3 binding assay under varied physiological conditions in the rat. When compared with vitamin D-deficient (-D) controls, rats raised on a normal vitamin D-sufficient (+D) diet showed elevated VDR levels in kidney (391 +/- 53 vs. 913 +/- 76 fmol/g of tissue;p < 0.05), but not in testis, heart, or lung. Up-regulation of the VDR also occurred in kidney of +D rats 1 day after a single 100-ng dose of 1,25(OH)2D3 (454 +/- 43 vs. 746 +/- 113 fmol/mg of DNA; p < 0.05), but no changes were seen in intestine, testis, or lung. Because 1,25(OH)2D3-induced hypercalcemia may independently affect VDR regulation, 1,25(OH)2D3 was infused into -D rats, and normocalcemia was maintained by reduced dietary calcium intake. In this model, the renal VDR was again up-regulated (446 +/- 115 vs. 778 +/- 58 fmol/mg of DNA; p < 0.05), but VDR levels in testis and lung were unaffected. Scatchard analysis and tests of 1,25(OH)2D3 dose (1-100 ng/day for 7 days) and temporal (100 ng/day for 1-7 days) responsiveness further supported the tissue-specific nature of the homologous VDR regulation. Assay of VDR levels by L-1-tosylamido-2-phenylethyl chloromethyl ketone-3H-1,25(OH)2D3 exchange assay ruled out differences in endogenous 1,25(OH)2D3 occupancy as the basis for the observed differences in VDR regulation. Finally, coidentity of the VDR-like sites in kidney versus testis was confirmed by competitive binding analysis comparing their relative affinities for 25(OH)D3 versus 1,25(OH)2D3 (30.5 +/- 6.4 vs. 35.6 +/- 3.6 in kidney and testis, respectively) and by immunoblot analysis using a highly specific monoclonal anti-rat VDR antibody. Thus, under a wide variety of experimental conditions, homologous up-regulation of the VDR occurs in the rat kidney in vivo, but not in several other target tissues which do not regulate plasma calcium homeostasis. Moreover, this differential VDR regulation did not result from secondary changes in plasma calcium, from differential 1,25(OH)2D3 responsiveness in the various tissues, nor from differences in endogenous 1,25(OH)2D3 occupancy of the VDR. These studies thus establish that, in contrast to observations in vitro, the widely described phenomenon of homologous VDR up-regulation in kidney and intestine is not a universal property of 1,25(OH)2D3 target tissues in vivo in the rat.  相似文献   

2.
3.
4.
5.
Hereditary 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]-resistant rickets (HVDRR) is a rare autosomal recessive disorder resulting in target organ resistance to the active form of vitamin D [1,25-(OH)2D3]. Point mutations in the vitamin D receptor (VDR) gene have been identified in HVDRR. We investigated the molecular basis of HVDRR in a Brazilian family with two affected siblings. The propositus is a 12-yr-old boy born to first cousin parents who exhibited the classical pattern of the HVDRR, including early-onset rickets, total alopecia, convulsions, hypocalcemia, secondary hyperparathyroidism, and elevated 1,25-(OH)2D3 serum levels. His younger sister also developed clinical and biochemical features of HVDRR at 1 month of age and died at 4 yr of age. Genomic DNA was isolated from peripheral blood of the boy and from dried umbilical cord tissue of his affected sister. We amplified exons 2 and 3 of the VDR gene, which encode the zinc finger DNA-binding domain by PCR. Direct sequencing of the PCR products revealed a homozygous substitution of cytosine for thymine at nucleotide position 88 in exon 2 of the VDR gene in both affected siblings. This point mutation determined the substitution of a stop codon (TGA) for arginine (CGA) at amino acid position 30 at the first zinc finger of the DNA-binding domain of the VDR. This substitution generated a truncated receptor missing 397 residues. The parents and a normal sister were heterozygous for this mutation. In conclusion, we describe a novel nonsense mutation in the first zinc finger of the VDR that generated a severely truncated form of this receptor.  相似文献   

6.
It has been well established that human mononuclear phagocytes have the capacity to produce 1,25-dihydroxy-vitamin D3 [1,25(OH)3D3] and express the vitamin D receptor (VDR). However, 1 alpha-hydroxylase activity and VDR receptor expression during differentiation of monocytes (MO) into mature macrophages (MAC) have not been previously examined. The in vitro maturation of blood MO can serve as a model for the in vivo transformation of immature blood MO into MAC. Here, when cultured in the presence of serum, MO undergo characteristic changes in morphology, antigenic phenotype, and functional activity consistent with their differentiation into MAC. We serially measured 1,25(OH)2D3 and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] synthesis, specific [3H]-1,25(OH)2D3 binding, and VDR mRNA levels during in vitro maturation of MO into MAC and correlated these functions with maturation-associated changes in the phenotype (MAX.1 and CD71) and secretory repertoire (interleukin-1 beta [IL-1 beta], neopterin) of the cells. MO showed only little conversion of 25-(OH)D3 into 1,25(OH)2D3 (1.4 +/- 0.4 pmol/10(6) cells/6 h, n = 5) that increased gradually during maturation into MAC at day 8 of culture (5.3 +/- 4.3 pmol/10(6) cells/6 h, n = 5). Interferon-gamma (IFN-gamma) increased baseline 1,25(OH)2D3-synthesis approximately twofold during all phases of differentiation. The time course of increased 1,25(OH)2D3-synthesis correlated with enhanced secretion of neopterin and expression of MAX.1 and CD71. The addition of exogenous 1,25(OH)2D3 did not influence constitutive 1,25(OH)2D3 synthesis, but IFN-gamma-stimulated production was suppressed to baseline levels. Exogenous 1,25(OH)2D3 also stimulated 24,25(OH)2D3 synthesis in freshly isolated MO (from 1.0 +/- 0.8 pmol/6 h to 5.6 +/- 0.9 pmol), whereas matured MAC showed no 24,25(OH)2D3 synthesis. Furthermore, we examined the expression of the VDR during the differentiation process. VDR mRNA and protein were constitutively expressed in MO, whereas VDR was downregulated in mature MAC on both the mRNA and protein levels. Homologous upregulation of VDR protein by 1,25(OH)2D3 occurred in MO and, to a lesser degree, in MAC. In contrast, VDR mRNA concentrations were not influenced by 1,25(OH)2D3. Taken together, our results show that MO into MAC differentiation in vitro is associated with (1) an enhanced capacity to synthesize 1,25(OH)2D3, (2) a loss of 24,25(OH)2D3-synthesizing activity, and (3) a decrease in the expression of VDR mRNA and protein. Because 1,25(OH)2D3 was shown to induce differentiation of MO into MAC, our data sugest an autoregulatory mechanism of MO/MAC generation by 1,25(OH)2D3.  相似文献   

7.
8.
The 1,25-dihydroxyvitamin D receptor (VDR) belongs to the nuclear hormone receptor family. Mutational analysis revealed that the carboxyl-terminal region between leucine-417 and glutamic acid-420 of the human VDR is essential for the ligand-dependent transactivation. Mutant VDR at this AF-2 region exhibits only weak suppressive effect on the transactivation via the wild type receptor compared to the estrogen and vitamin A receptors, which confer the strong dominant negative effect. Using the AF-2 mutant VDR protein, we demonstrated a 65kD nuclear protein, which binds to the AF-2 region of the human VDR in a ligand dependent manner.  相似文献   

9.
This study examines the influence of chronic retroviral infection of mice with a LPBM5 virus mixture on the paracrine system involving immune cells and 1,25-(OH)2D3 in the spleen. Plasma ionized calcium, 25-(OH)D and 1,25-(OH)2D of infected mice were unchanged. In contrast, the specific binding of 1,25-(OH)2D3 to spleen cytosol and the number of monocyte/macrophages expressing 1,25-(OH)2D3 receptors (VDR) were markedly increased. The retroviral infection also influenced the local production of 1,25-(OH)2D3 in the spleen. It did not alter this production in monocyte/macrophages but increased that in isolated T cells. Isolated B cells in control mice did not produce 1,25-(OH)2D3, but they increased the ability of isolated T cells to produce this metabolite during coculture incubations. Infection altered this cell interaction as 1,25-(OH)2D3 production in infected T cells decreased when these cells were cocultured with infected B cells. Thus, chronic retroviral infection alters both the local vitamin D metabolism and VDR expression by immune cells in mice. These findings suggest close local interactions between 1,25-(OH)2D3 and immune system activation during retroviral infection.  相似文献   

10.
11.
1,25-(OH)2D3 and 24,25-(OH)2D3 mediate their effects on chondrocytes through the classic vitamin D receptor (VDR) as well as through rapid membrane-mediated mechanisms which result in both nongenomic and genomic effects. In intact cells, it is difficult to distinguish between genomic responses via the VDR and genomic and nongenomic responses via membrane-mediated pathways. In this study, we used two hybrid analogues of 1,25-(OH)2D3 which have been modified on the A-ring and C,D-ring side chain (1 alpha-(hydroxymethyl)-3 beta-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YA = 3a) and 1 beta-(hydroxymethyl)-3 alpha-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YB = 3b) to examine the role of the VDR in response of rat costochondral resting zone (RC) and growth zone (GC) chondrocytes to 1,25-(OH)2D3 and 24,25-(OH)2D3. These hybrid analogues are only 0.1% as effective in binding to the VDR from calf thymus as 1,25-(OH)2D3. Chondrocyte proliferation ([3H]-thymidine incorporation), proteoglycan production ([35S]-sulfate incorporation), and activity of protein kinase C (PKC) were measured after treatment with 1,25-(OH)2D3, 24,25-(OH)2D3, or the analogues. Both analogues inhibited proliferation of both cell types, as did 1,25-(OH)2D3 and 24,25-(OH)2D3. Analogue 3a had no effect on proteoglycan production by GCs but increased that by RCs. Analogue 3b increased proteoglycan production in both GC and RC cultures. Both analogues stimulated PKC in GC cells; however, neither 3a nor 3b had an effect on PKC activity in RC cells. 1,25-(OH)2D3 and 3a decreased PKC in matrix vesicles from GC cultures, whereas plasma membrane PKC activity was increased, with 1,25-(OH)2D3 having a greater effect. 24,25-(OH)2D3 caused a significant decrease in PKC activity in matrix vesicles from RC cultures; 24,25-(OH)2D3, 3a, and 3b increased PKC activity in the plasma membrane fraction, however. Thus, with little or no binding to calf thymus VDR, 3a and 3b can affect cell proliferation, proteoglycan production, and PKC activity. The direct membrane effect is analogue-specific and cell maturation-dependent. By studying analogues with greatly reduced affinity for the VDR, we have provided further evidence for the existence of a membrane receptor(s) involved in mediating nongenomic effects of vitamin D metabolites.  相似文献   

12.
13.
14.
15.
16.
Previous studies have shown that 1,25-dihydroxyvitamin D [1,25(OH)2D] plays important roles in the formation of osteoclasts through its actions on osteoblastic cells. We have generated mice lacking vitamin D receptor (VDR) by gene targeting (VDR-/-). These mice had tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and exhibited similar levels of parameters for bone resorption to those in wild type mice. The present studies were undertaken to clarify whether effects of 1,25(OH)2D on osteoclast formation require VDR in osteoblasts, and to examine mechanisms of the formation of osteoclasts without VDR-mediated actions using VDR-/- mice. When wild-type calvarial osteoblasts and spleen cells were co-cultured with 1,25(OH)2D, TRAP-positive osteoclasts were formed regardless of the genotypes of spleen cells. In contrast, when osteoblasts from VDR-/- mice were co-cultured, no osteoclasts could be formed even with wild-type spleen cells. Parathyroid hormone and interleukin-1alpha stimulated osteoclast formation by co-cultures from VDR-/- mice, and the generated osteoclasts showed resorbing activity. These results demonstrate that VDR-mediated actions of 1,25(OH)2D in osteoblasts are essential for osteoclast formation by 1,25(OH)2D, and that functionally intact osteoclasts can be formed without 1,25(OH)2D actions under stimulations by other agents. It is suggested that osteoclastic bone resorption can be maintained without 1,25(OH)2D actions by other stimulatory agents.  相似文献   

17.
18.
19.
Using 1 alpha,2 alpha-oxido-cholesta-5,7-diene-3 beta,25-diol (2) as a starting material, the provitamins of calcitriol with an additional 2 beta-chloro-, 2 beta-fluoro-, and 2 beta-methoxy-substituent (3,4,5) are obtained by transdiaxial opening of the oxirane ring with nucleophiles. An efficient irradiation process is described and used for the synthesis of the 2 beta-substituted calcitriols NS2 (2 beta-Cl), NS6 (2 beta-F), and NS7 (2 beta-OCH3). The affinity of these three vitamin D3 derivatives to the vitamin D receptor (VDR) and was determined. These three A-ring derivatives of 1,25(OH)2D3 were further tested for their proliferation-inhibitory and anti-adipogenic activity and gene regulatoric activity in the vitamin D3-sensitive, murine, mesenchymal cell line C3H10T1/2. The VDR-affinity of the 2 beta-chloro derivative, NS2 (2 beta-Cl), was identical to 1,25(OH)2D3 and its vitamin D binding protein (DBP)-affinity was in the range of 1,25(OH)2D3. NS2 inhibited the proliferation of C3H10T1/2(BMP-4)-cells in the presence of fetal calf serum (FCS) 9 times, and, in the absence of FCS, 111 times lower, as compared with 1,25(OH)2D3. The ID50 dose of adipogenesis-inhibition of NS2 was 13 times higher than the ID50 dose of 1,25(OH)2D3. NS6 (2 beta-F) displayed a slightly higher affinity than 1,25(OH)2D3 to the VDR and DBP-affinity. The proliferation-inhibitory activity in the presence of FCS was 90 times higher, as compared with 1,25(OH)2D3. In the FCS-free proliferation assay NS6 displayed an inhibitory activity in the range of 1,25(OH)2D3. NS6 showed an 5 times higher potency to inhibit (pre)adipocyte-differentiation in C3H10T1/2(BMP-4)-cells than 1,25(OH)2D3. NS7 (2 beta-OCH3) showed the lowest VDR-affinity and the highest DBP-affinity of the tested substances, as compared with 1,25(OH)2D3 (11 times lower and 35 times higher respectively). Its proliferation-inhibitory activity in the FCS-free medium was 9 times and in the FCS-containing assay 67 times lower in comparison with 1,25(OH)2D3. A 1250 times higher NS7-dose was needed to reach the anti-adipogenic potency of 1,25(OH)2D3. All tested substances displayed a similar ability to activate a vitamin D responsive element-regulated reporter gene compared to 1,25(OH)2D3 (NS2 and NS6: 1.3 times higher activity; NS7: 1,4 times lower activity).  相似文献   

20.
We previously reported nongenomic activation of ROS 17/2.8 cells by vitamin D metabolites (1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3], 25-hydroxyvitamin D3, 22-oxa-calcitriol, etc.). The hormone 1 alpha,25-(OH)2D3, or calcitriol, mediated rapid transient changes in intracellular free calcium levels and concomitant stimulation of inositol polyphosphate and diacylglycerol production. These effects resemble the mechanism of cell activation induced by ligands with plasma membrane (PM) receptors. As preliminary studies indicated that PM isolated from ROS 17/2.8 cells lacked specific binding sites for calcitriol alone, we studied the association between calcitriol-occupied vitamin D receptors (VDR) and ROS 17/2.8 cellular membranes. Saturable binding to the PM and the endoplasmic reticulum (ER) of calcitriol-occupied VDR was demonstrated. Binding of the VDR-[3H]calcitriol complex was displaceable by nonradioactive VDR/calcitriol, but not by the unoccupied VDR or by calcitriol alone. ER binding, but not PM binding, was competitively inhibited by a peptide from the VDR sequence recognized by an ER protein, calreticulin, and by an anticalreticulin antibody. The monoclonal antibody (9A7) against the VDR inhibited PM and ER binding of the hormone-occupied VDR. These results were substantiated by studies using baculovirus-expressed human VDR for binding studies with the PM and ER and for immunoblot analysis. We conclude that specific PM and ER sites of association for calcitriol-occupied VDR exist and suggest that these associations could participate in the nongenomic rapid actions of 1 alpha,25-(OH)2D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号