共查询到20条相似文献,搜索用时 15 毫秒
1.
J.D.A. Bellido 《Fuel》2009,88(9):1673-1034
ZrO2, γ-Al2O3 and ZrO2/γ-Al2O3-supported copper catalysts have been prepared, each with three different copper loads (1, 2 and 5 wt%), by the impregnation method. The catalysts were characterized by nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR) with H2, Raman spectroscopy and electronic paramagnetic resonance (EPR). The reduction of NO by CO was studied in a fixed-bed reactor packed with these catalysts and fed with a mixture of 1% CO and 1% NO in helium. The catalyst with 5 wt% copper supported on the ZrO2/γ-Al2O3 matrix achieved 80% reduction of NO. Approximately the same rate of conversion was obtained on the catalyst with 2 wt% copper on ZrO2. Characterization of these catalysts indicated that the active copper species for the reduction of NO are those in direct contact with the oxygen vacancies found in ZrO2. 相似文献
2.
After a high-temperature reduction (HTR) at 773 K, TiO2-supported Au became very active for CO oxidation at 313 K and was an order of magnitude more active than SiO2-supported Au, whereas a low-temperature reduction (LTR) at 473 K produced a Au/TiO2 catalyst with very low activity. A HTR step followed by calcination at 673 K and a LTR step gave the most active Au/TiO2 catalyst of all, which was 100-fold more active at 313 K than a typical 2% Pd/Al2O3 catalyst and was stable above 400 K whereas a sharp decrease in activity occurred with the other Au/TiO2 (HTR) sample. With a feed of 5% CO, 5% O2 in He, almost 40% of the CO was converted at 313 K and essentially all the CO was oxidized at 413 K over the best Au/TiO2 catalyst at a space velocity of 333 h–1 based on CO + O2. Half the chloride in the Au precursor was retained in the Au/TiO2 (LTR) sample whereas only 16% was retained in the other three catalysts; this may be one reason for the low activity of the Au/TiO2 (LTR) sample. The reaction order on O2 was approximately 0.4 between 310 and 360 K, while that on CO varied from 0.2 to 0.6. The chemistry associated with this high activity is not yet known but is presently attributed to a synergistic interaction between gold and titania. 相似文献
3.
B. Grbic N. Radic Z. Arsenijevic R. Garic-Grulovic Z. Grbavcic 《Applied catalysis. B, Environmental》2009,90(3-4):478-484
The deep oxidation of dimethylamine (DMA) was studied over Pt/Al2O3 catalysts with small (1 nm) and large (7.8–15.5 nm) Pt crystallite sizes. The turnover frequency (TOF) was higher for the large than for the small Pt crystallites, indicating that the reaction is structure sensitive. Two kinetic models were used to interpret the obtained results, i.e., the Mars van Krevelen and a mechanism based on the adsorption of oxygen and adsorption of dimethylamine on different active sites were employed. Both models showed that the activation energy for the oxygen chemisorption rate constant (ko) decreased with increasing of Pt crystallite size and that the activation energy for the surface reaction rate constant (ki) was independent of the Pt crystallite size. The structure sensitivity may be explained by differences in the reactivity of the oxygen adsorbed on these Pt crystallites.The Mars van Krevelen model fits the TOF values very well at concentrations of DMA higher than 1500 ppm, while in the lower concentrations region, the model under predicts the experimental data. The model based on the adsorption of oxygen and DMA on different active sites fits the experimental data quite well over the whole temperature and concentration range. The fitted values of the Henry adsorption constant are independent of the Pt crystallite size. 相似文献
4.
M. Erdem Günay Ramazan Yldrm 《Chemical engineering journal (Lausanne, Switzerland : 1996)》2008,140(1-3):324-331
In this study, the design of Pt-Co-Ce/Al2O3 catalyst for the low temperature CO oxidation in hydrogen streams was modeled using artificial neural networks. The effects of five design parameters, namely Pt wt.%, Co wt.%, Ce wt.%, calcination temperature and calcination time, on CO conversion were investigated by modeling the experimental data obtained in our laboratory for 30 catalysts. Although 30 points data set can be considered as small for the neural network modeling, the results were quite satisfactory apparently due to the fact that the experimental data generated with response surface method were well balanced over the experimental region and it was very suitable for neural network modeling. The success of neural network modeling was more apparent when the number of data points was increased to 120 by using the time on stream as another input parameter. It was then concluded that the neural network modeling can be very helpful to improve the experimental works in catalyst design and it may be combined with the statistical experimental design techniques so that the successful models can be constructed using relatively small number of data points. 相似文献
5.
Xiao-Ying Wang Shu-Ping Wang Shu-Rong Wang Ying-Qiang Zhao Jing Huang Shou-Min Zhang Wei-Ping Huang Shi-Hua Wu 《Catalysis Letters》2006,112(1-2):115-119
Au/CeO2 catalysts prepared by co-precipitation (CP) and deposition-precipitation (DP) methods were tested for low temperature CO
oxidation reaction. The structural characters and redox features of the catalysts were investigated by XRD, XPS and H2-TPR. Their catalytic performances for low temperature CO oxidation were studied by means of a microreactor -GC system. It
showed that the catalytic activities of Au/CeO2 catalysts greatly depended on the preparation method. The catalysts prepared by DP method exhibited a surprisingly higher
activity towards CO oxidation than that prepared by CP method. This may arise from the differences in the particle sizes of
Au and redox properties of the catalysts. The low Au loading and the resistance to high temperature of DP-prepared catalyst
made it more applicable. 相似文献
6.
Miguel Ángel Centeno Cristina Portales Ignacio Carrizosa José Antonio Odriozola 《Catalysis Letters》2005,102(3-4):289-297
A series of low loading gold supported ceria/alumina catalysts have been prepared by the deposition–precipitation method, varying the pH of the synthesis. The catalysts were characterised by means of XRD, TEM, SBET, XRF and UV–Vis techniques, and their catalytic activity towards CO oxidation in the absence and in presence of water in the stream, were tested. It has been found that in this low loading gold catalysts, where the metallic particles are far away one from another and the oxygen transportation is not the limiting step of the reaction, the electronic properties of the ceria phase and the structure of the metal-support perimeter more than the diameter of the gold nanoparticles is the determinant factor in the catalytic performances of the solid. 相似文献
7.
Previous results on different catalysts revealed that methylcyclohexane underwent selective dehydrogenation to form toluene and hydrogen. This reaction system is a useful prototype model for similar systems in the chemical process and petroleum refining industries, such as hydrotreating for aromatics reduction, desulfurization, denitrogenation, reforming for aromatics reduction, dehydrocyclization, and fuel processing of liquid hydrocarbons in the generation of hydrogen feed for fuel cells. Dehydrogenation of methylcyclohexane to toluene is a method for hydrogen storage in the form of liquid organic hydrides. The efficiency of the dehydrogenation reactions and the quantity of products depend on the catalyst used. In the case of the dehydrogenation of methylcyclohexane to toluene, a metallic function, usually platinum is required as the catalyst. Although, there were some different catalysts used by former researchers, there was almost no investigation about the use of the nickel catalysts for this reaction. From the economical point of view, more efficient catalysts and reaction engineering methods should be developed for these reactions.In this work dehydrogenation of methylcyclohexane was performed in a fixed-bed catalytic reactor in the temperature range of 653–713 K on prepared Ni/Al2O3 catalysts having 5, 10, 15 and 20 wt.% Ni content. The inlet flowrates of methylcyclohexane and hydrogen to the reactor were changed by keeping one of them constant in order to investigate their effects on this reaction. 相似文献
8.
9.
The SSITKA measurements were performed in the steady state of complete methane oxidation on the Pd/Al2O3 and Pt/Al2O3 catalysts. It was found that the number of intermediates and their average life-time on the catalyst surface changes with
the increase of reaction temperature. On the Pd/Al2O3 catalyst there is larger number of active centres than on Pt/Al2O3 catalyst which permits the course of methane oxidation at lower temperatures. 相似文献
10.
In this work, the experimental data for CO oxidation over promoted Au/Al2O3 catalysts were analyzed using decision trees and modular neural networks. The full dataset was first classified by decision trees to identify and select the conditions for high catalytic activity; then the reduced dataset containing only the promising data were modeled using neural networks, at which the compositional and operating variables were processed in a modular manner to be able to model their effects together but treat them separately. It was found that operating variables were more influential on catalytic activity than catalyst compositional variables. The temperature was found to be the most significant operating variable while Mg and Mn were the best performing promoters. It was also concluded that decision trees and neural networks can complement each other to extract easily comprehensible knowledge, and they can be used for similar catalytic systems for the same purpose. 相似文献
11.
Wen Juan Xue Yu Fei Wang Peng Li Zhao-Tie Liu Zheng Ping Hao Chun Yan Ma 《Catalysis communications》2011,12(13):1265-1268
Au/Co3O4 catalysts with different morphologies (nanorods, nanopolyhedra and nanocubes) were successfully synthesized and evaluated for ethylene complete oxidation. We found that support morphology has a significant effect on catalytic activity, which is related to the exposed planes of different morphological Co3O4. HRTEM revealed the Co3O4-nanorods predominantly exposes {110} planes, while the dominant exposed planes of Co3O4-nanopolyhedra and -nanocubes are {011} and {001} planes, respectively. Compared with {011} and {001} planes, {110} planes exhibit the maximum amount of oxygen vacancies, which play a major role in ethylene oxidation. Therefore, Au/Co3O4-nanorods exhibits extraordinary catalytic activity, yielding 93.7% ethylene conversion at 0 °C. 相似文献
12.
Izabela Dobrosz-Gmez Ireneusz Kocemba Jacek M. Rynkowski 《Applied catalysis. B, Environmental》2008,83(3-4):240-255
The physico-chemical properties and activity of Ce-Zr mixed oxides, CeO2 and ZrO2 in CO oxidation have been studied considering both their usefulness as supports for Au nanoparticles and their contribution to the reaction. A series of Ce1−xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1) oxides has been prepared by sol–gel like method and tested in CO oxidation. Highly uniform, nanosized, Ce-Zr solid solutions were obtained. The activity of mixed oxides in CO oxidation was found to be dependent on Ce/Zr molar ratio and related to their reducibility and/or oxygen mobility. CeO2 and Ce0.75Zr0.25O2, characterized by the cubic crystalline phase show the highest activity in CO oxidation. It suggests that the presence of a cubic crystalline phase in Ce-Zr solid solution improves its catalytic activity in CO oxidation. The relation between the physico-chemical properties of the supports and the catalytic performance of Au/Ce1−xZrxO2 catalysts in CO oxidation reaction has been investigated. Gold was deposited by the direct anionic exchange (DAE) method. The role of the support in the creation of catalytic performance of supported Au nanoparticles in CO oxidation was significant. A direct correlation between activity and catalysts reducibility was observed. Ceria, which is susceptible to the reduction at the lowest temperature, in the presence of highly dispersed Au nanoparticles, appears to be responsible for the activity of the studied catalysts. CeO2-ZrO2 mixed oxides are promising supports for Au nanoparticles in CO oxidation whose activity is found to be dependent on Ce/Zr molar ratio. 相似文献
13.
Kyung-Yeol Kim Suk Woo Nam Jonghee Han Sung Pil Yoon Tae-Hoon Lim Ho-In Lee 《Journal of Industrial and Engineering Chemistry》2008,14(6):853-859
Pt–Co/Al2O3 catalysts were prepared with different Co/Pt weight ratios (0.3–1.8) and their performances for preferential oxidation of CO (PROX) were tested. The activity of the catalyst increased with Co/Pt weight ratio due to the increase of the area of active phase by interaction between Pt and Co species. The 13-layered micro-channel reactor was prepared by stacking the plates coated with Pt–Co/Al2O3 catalyst. The reactor was divided into three parts (inlet, middle, and outlet) to evaluate the performance of each part. Most of O2 supplied was depleted at the inlet part and the temperature gradient of the reactor occurred due to the high exothermicity of oxidations of CO and hydrogen. In order to prevent hot spot and temperature gradient, the reactor with non-uniform distribution of the catalyst (partially coating the catalyst on the channels) was prepared. The prepared reactor showed uniform temperature distribution and exhibited excellent performance for PROX. 相似文献
14.
S.M. Lakiza Ja.S. TyschenkoL.M. Lopato 《Journal of the European Ceramic Society》2011,31(7):1285-1291
The phase diagram of the Al2O3-HfO2-Y2O3 system was first constructed in the temperature range 1200-2800 °C. The phase transformations in the system are completed in eutectic reactions. No ternary compounds or regions of appreciable solid solution were found in the components or binaries in this system. Four new ternary and three new quasibinary eutectics were found. The minimum melting temperature is 1755 °C and it corresponds to the ternary eutectic Al2O3 + HfO2 + Y3Al5O12. The solidus surface projection, the schematic of the alloy crystallization path and the vertical sections present the complete phase diagram of the Al2O3-HfO2-Y2O3 system. 相似文献
15.
Comparative study of Au/ZrO2 catalysts in CO oxidation and 1,3-butadiene hydrogenation 总被引:1,自引:0,他引:1
This work investigates the effects of Au3+/Au0 ratio or distribution of gold oxidation states in Au/ZrO2 catalysts of different gold loadings (0.01–0.76% Au) on CO oxidation and 1,3-butadiene hydrogenation by regulating the temperature of catalyst calcination (393–673 K) and pre-reduction with hydrogen (473–523 K). The catalysts were prepared by deposition–precipitation and were characterized with elemental analysis, nitrogen adsorption/desorption, TEM, XPS and TPR. The catalytic data showed that the exposed metallic Au0 atoms at the surface of Au particles were not the only catalytic sites for the two reactions, isolated Au3+ ions at the surface of ZrO2, such as those in the catalysts containing no more than 0.08% Au were more active by TOF. For 0.76% Au/ZrO2 catalysts having coexisting Au3+ and Au0, the catalytic activity changed differently with varying the Au3+/Au0 ratio in the two reactions. The highest activity for the CO oxidation reaction was observed over the catalyst of Au3+/Au0 = 0.33. However, catalyst with a higher Au3+/Au0 ratio showed always a higher activity for the hydrogenation reaction; co-existance of Au0 with Au3+ ions lowered the catalyst activity. Moreover, the coexisting Au particles changed the product selectivity of 1,3-butadiene hydrogenation to favor the formation of more trans-2-butene and butane. It is thus suggested that for better control of the catalytic performance of Au catalyst the effect of Au3+/Au0 ratio on catalytic reactions should be investigated in combination with the particle size effect of Au. 相似文献
16.
MgO/Al2O3 and NiO/MgO/Al2O3 solid bases were prepared by mixing method. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD) and surface area measurements. After supported sulfonated cobalt phthalocyanine (CoPcS) the catalytic performance of these catalysts was evaluated in the mercaptan oxidation reaction. The effect of Mg/Al mole ratios on activity, crystal structure, basicity and stability in air was discussed. And the mechanism of the effect of NiO was identified. Results show that the base amount of MgO/Al2O3 increases with increasing Mg/Al mole ratio and catalyst with high Mg/Al mole ratio has a higher initial activity. NiO/MgO/Al2O3–CoPcS shows a higher initial activity and a much longer lifetime than MgO/Al2O3–CoPcS. When nickel oxide is doped into the MgO/Al2O3 support more crystal defects are generated, which increases the amount and types of basic sites. 相似文献
17.
Johann Steyn Gary Pattrick Michael S. Scurrell Diane Hildebrandt Mpfunzeni C. Raphulu Elma van der Lingen 《Catalysis Today》2007,122(3-4):254
Au-based catalysts, known for ambient temperature CO oxidation, have to provide stable performance of up to 5000 h in order to be commercially applicable in automotive fuel cells. In this report, the on-line deactivation characteristics of Au/TiO2 in unconventional PROX conditions are discussed. As opposed to CO removal from air, results in this report suggests that carbonates have a minor effect on deactivation of Au/TiO2 in dry H2-rich conditions. Also, no conclusive correlation between surface hydration and deactivation was observed. Rather, deactivation appeared to have occurred as a result of an intrinsic transformation in the oxidation state of the active species in the reducing operating conditions; a process which was reversible in an oxidizing atmosphere. 相似文献
18.
Jing Huang Shurong Wang Yingqiang Zhao Xiaoying Wang Shuping Wang Shihua Wu Shoumin Zhang Weiping Huang 《Catalysis communications》2006,7(12):1029-1034
In this paper, the CuO/TiO2 catalysts prepared by the deposition–precipitation (DP) method were extensively investigated for CO oxidation reaction. The structural characters of the CuO/TiO2 catalysts were comparatively investigated by TG-DTA, XRD, and XPS measurements. It was shown that the catalytic behavior of CuO/TiO2 catalysts greatly depended on the TiO2-support calcination temperature, the CuO loading amount and the CuO/TiO2 catalysts calcination temperature. CuO supported on the anatase phase of TiO2-support calcined at 400 °C showed better catalytic activity than those supported on TiO2 calcined at 500 and 700 °C. Among all our investigated catalysts with CuO loading from 2% to 12%, the catalyst with 8 wt% CuO loading exhibited the highest catalytic activity. The optimum calcination temperature of the CuO/TiO2 catalysts was 300 °C. The XRD results indicated that the catalytic activity of the CuO/TiO2 catalysts was related to the crystal phase and particle size of TiO2 support and CuO active component. 相似文献
19.
20.
Gang WangHui Wang Weilong Li Zhaoyu RenJintao Bai Jinbo Bai 《Fuel Processing Technology》2011,92(3):531-540
Fe/Al2O3 catalysts with different Fe loadings (10-90 mol%) were prepared by hydrothermal method. Ethanol decomposition was studied over these Fe/Al2O3 catalysts at temperatures between 500 and 800 °C to produce hydrogen and multi-walled carbon nanotubes (MWCNTs) at the same time. The results showed that the catalytic activity and stability of Fe/Al2O3 depended strongly on the Fe loading and reaction temperature. The Fe(30 mol%)/Al2O3 and Fe(40 mol%)/Al2O3 were both the effective catalyst for ethanol decomposition into hydrogen and MWCNTs at 600 °C. Several reaction pathways were proposed to explain ethanol decomposition to produce hydrogen and carbon (including nanotube) at the same time. 相似文献