首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
将纯碳纳米管通过浓酸氧化改性,然后通过溶液共混法制备改性碳纳米管/尼龙12复合材料的粉末.红外光谱分析表明,经过酸氧化处理,碳纳米管表面接上了羧基和羟基等极性官能团;光学图像表明改性后的碳纳米管与有机溶剂的相容性和分散性得到较好地改善;热重分析可知碳纳米管的加入提高了材料的热稳定性;力学性能测试显示碳纳米管与尼龙12通过溶液共混法制得的样品抗拉强度比熔融共混法制备的样品提高了3%.  相似文献   

2.
熔融共混法制备粘土/聚氨酯弹性体纳米复合材料的研究   总被引:4,自引:0,他引:4  
利用十六烷基季铵盐对累托石(REC)进行了有机化处理,采用不同填充量(2、5、8份)的REC及有机累托石(ORECB)与热塑性聚氨酯弹性体(TPUR)进行熔融共混,制备了粘土/热塑性聚氨酯弹性体纳米复合材料;采用红外光谱(FTIR)、X—射线衍射分析(XRD)、扫描电镜(SEM)及Molau实验方法研究了REC及ORECB在TPUR中的分散性,研究了复合材料的力学性能。结果表明:ORECB在质量分数为2份时复合材料的拉伸强度提高了40%;撕裂强度在所加份数范围内呈现递增趋势,8份时提高了40%。  相似文献   

3.
纳米SiO2具有异相成核的作用,能提高PET的结晶能力。文章探讨了溶液共混法和不同偶联剂对PET结晶能力的影响。结果表明:悬浮液的PH=9~10时,分散均匀性最好;采用溶液共混法进行复合,可制得熔点低于纯PET熔点的PET树脂,纳米SiO2复合材料。  相似文献   

4.
丝素/聚氨酯共混膜的制备和性能研究   总被引:9,自引:1,他引:9  
采用丝素(SF)溶液和阴离子型水性聚氨酯(APU)混合制成透明的薄膜。通过测试,分析了共混膜的IR图谱、X射线衍射曲线、电子显微镜扫描照片和力学性能,研究了不同共混比例的SF/APU共混膜的结构和性能。结果表明:共混膜中的丝素的结晶度由于聚氨酯的加入,β-结构有所提高;随着丝素含量的增加,共混膜的拉伸断裂强力和初始模量提高,拉伸断裂伸长率减小;压缩线性度随聚氨酯含量的增加而减小,共混膜的柔软性提高。  相似文献   

5.
6.
原位聚合法制备多壁碳纳米管/聚乙烯复合材料的研究   总被引:2,自引:0,他引:2  
通过原位聚合法制备改性的多壁碳纳米管和聚乙烯复合材料.讨论偶联剂对催化活性、复合材料力学性能等的影响.实验表明:经过酸化和偶联剂改性的多壁碳纳米管通过二次负载钛系活性可达2.0×103g/g.h左右,分子量为2.0×105左右,当复合材料中多壁碳纳米管质量分数达2.5%时拉伸强度可超过30 MPa.  相似文献   

7.
为了开发棉籽蛋白在材料领域的应用,利用含肽键的棉籽蛋白与含酰胺基的聚氨酯预聚物共混改性反应制备复合材料,来改善棉籽蛋白的力学性能和耐水性,以保持其生物降解性.利用反应挤出技术,将棉籽分离蛋白与聚氨酯预聚物共混挤出,采用热压工艺,制备了聚氨酯预聚物交联的可降解棉籽蛋白复合材料.结果表明,该材料的加工性、力学性能和耐水性优良.随着聚氨酯组分的增加,材料的断裂伸长率增加,耐水性提高,其中,聚氨酯预聚物质量分数为50%的复合材料,其拉伸强度、断裂伸长率和耐水性分别达到7MPa、150%和20%,是优良的可降解韧性复合材料.  相似文献   

8.
9.
为了进一步实现其他材料与聚吡咯的性能互补与优化,先以甲基橙为掺杂剂,过硫酸铵为氧化剂,采用软模板法制备具有一维纳米结构的聚吡咯,再利用水热法制备二氧化锰/碳纳米管复合材料,最后将二氧化锰/碳纳米管复合材料与聚吡咯进行混合处理,改变复合材料中二氧化锰/碳纳米管复合材料和聚吡咯微米管的含量,得到了3种不同比例的二氧化锰/碳纳米管/聚吡咯复合材料. 采用扫描电子显微镜测试观察所得产物的微观形貌,通过X-射线粉末衍射仪测试其结构与组成,最后通过电化学工作站测试分析复合物的电化学性能与循环稳定性. 结果表明,二氧化锰/碳纳米管/聚吡咯复合材料在微观上复合均匀,电容性能比单独的聚吡咯或二氧化锰/碳纳米管复合材料量有显著改善.  相似文献   

10.
碳纳米管/铝基复合材料的制备及摩擦性能研究   总被引:9,自引:1,他引:9  
采用无压渗透法制备了碳纳米管增强铝基复合材料,并对其摩擦性能进行了研究。利用扫描电镜(SEM)观察了复合材料断面的形貌,通过复合材料硬度测量和摩擦磨损实验,研究了不同碳纳米管体积分数对复合材料的硬度及摩擦磨损性能的影响。实验结果表明,碳纳米管均匀地分散于复合材料中,且与铝基体结合良好;碳纳米管的加入增大了复合材料的硬度,且其摩擦系数和磨损率随着碳纳米管体积分数的增大而减小。由于碳纳米管本身具有自润滑和增强作用,碳纳米管的加入极大地改善了铝合金材料的摩擦性能。  相似文献   

11.
不饱和树脂具有多种官能团,可在常温和常压下固化.针对不饱和树脂的力学性能较差问题,采用原位聚合法制备了碳纳米管不饱和树脂复合材料.利用阻抗分析仪和万能试验机对复合材料的电学性能和力学性能分别进行了研究.结果表明,当碳纳米管质量分数达到0.5%时复合材料的拉伸强度、弯曲强度和压缩强度分别提高了40%、30%和75%.当碳纳米管的质量分数达到1%时,其电导率达到10-7S/cm.  相似文献   

12.
采用溶液共混法制备碳纳米管(CNTs)/环氧树脂(EP)复合材料,主要研究丙酮用量、混合方式、超声时间、CNTs含量等制备工艺对复合材料的热性能和导电性能的影响.通过用SEM、DSC,TGA以及万用表对复合材料进行分析表征,结果表明,丙酮的加入量越多,超声时间越长,CNTs/EP的复合材料的导电性越好,CNTs在复合材料中分散性也好,而随着CNTs含量增加,复合材料的导电性按照逾渗理论的规律提高,且逾渗闶值出现在0.5 0A~1%范围内.利用超声处理伴随着搅拌这种混合方式所得复合材料的导电性最好,加入碳纳米管的复合材料玻璃转化温度Tg和热稳定性能较纯EP有显著提高.  相似文献   

13.
采用化学氧化聚合法以不同浓度的苯胺单体制备聚苯胺(PANI-1和PANI-2),采用相同方法在氮掺杂碳纳米管(NCNTs)悬浮液中制备聚苯胺/氮掺杂碳纳米管复合材料(PANI/NCNTs-1和PANI/NCNTs-2)。利用循环伏安法、恒电流充放电和电化学交流阻抗技术对合成材料的超级电容器性能进行研究分析。在0.2 A/g电流密度下进行恒电流充放电, PANI/NCNTs-1和PANI/NCNTs-2复合材料可以获得较高的比电容。同时, PANI/NCNTs复合材料也具有优异的倍率性能和充放电稳定性,这都表明该复合材料在电化学储能器件领域具有广阔的应用前景。  相似文献   

14.
介绍了高聚物/碳纳米管复合材料的研究进展.分别从碳纳米管在聚合物基复合材料中作为结构体和功能体两方面论述了碳纳米管/聚合物复合材料的进展及应用.详细讨论了碳纳米管的力学性能及若干影响因素:分散性、取向度和界面粘接状况.并简要介绍了碳纳米管的若干功能性应用.  相似文献   

15.
以钛酸异丙酯为前驱体,采用水热合成法制备了TiO2/氮掺杂碳纳米管复合材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电镜(TEM)等对样品进行了详细的表征,并以罗丹明B作为模型污染物,研究了TiO2/氮掺杂碳纳米管复合材料作为光催化剂在紫外光照射下的光催化能力,结果表明TiO2/氮掺杂碳纳米管复合材料对环境污染物具有良好的降解能力。  相似文献   

16.
采用溶液共沉淀法制备了定向碳纳米管/氯化聚乙烯复合材料,研究了定向碳纳米管预处理方法和其用量对复合材料力学性能的影响,并利用扫描电子显微镜(SEM)观察了复合材料拉伸断面的形貌特征。结果表明:定向碳纳米管/氯化聚乙烯复合材料的拉伸强度随定向碳纳米管加入量的增加而增大,当定向碳纳米管的加入量为5份(氯化聚乙烯为100份)时,其拉伸强度最大,与纯氯化聚乙烯的拉伸强度相比,提高了75%;化学修饰后的定向碳纳米管在氯化聚乙烯基体中有了较好的分散性及较强的界面结合力。  相似文献   

17.
对氧化石墨烯(GO)和碳纳米管(CNT)进行磺化处理,得到的磺化石墨烯(SG)和磺化碳纳米管(SCNT)在溶液中有良好的分散性。将SG、SCNT和氧化剂溶于水中形成水相,聚吡咯(PPy)单体溶于有机溶剂中形成有机相。有机相与水相之间发生界面反应,得到PPy/SG/SCNT复合材料。采用扫描电子显微镜、X射线衍射、电化学工作站对复合材料进行表征与测试。结果表明:PPy/SG/SCNT复合材料组分复合均匀,是无定形材料,其电化学性能较单独的PPy、SG或SCNT更优越,而且当正己烷作为有机溶剂时,所得到的三组分复合材料更适合作为超级电容器电极材料。  相似文献   

18.
采用原位聚合法合成了不同纳米碳管(CNTs)含量的纳米碳管/聚醚酮酮(CNTs/PEKK)复合材料,并利用红外光谱、差示扫描量热分析、热重分析、扫描电镜等对复合材料进行了表征。研究结果表明,在未经有机化处理的情况下,纳米碳管以纳米结构状态分散在基体中,显著地提高了聚醚酮酮的耐热性能,降低了其熔点。  相似文献   

19.
柠檬酸修饰碳纳米管及其分散性能   总被引:1,自引:0,他引:1  
采用硫酸和硝酸混合酸纯化碳纳米管,然后用氨水和柠檬酸处理纯化的碳纳米管,并运用透射电子显微镜和红外光谱表征碳纳米管的结构和形貌.另外,还研究了碳纳米管在水中的分散性能.光谱实验表明,经过混合酸处理不仅能够得到纯净的碳纳米管,而且能够在碳纳米管的表面引入丰富的羟基和羧基官能团.通过氨水处理和柠檬酸修饰,能够在碳纳米管表面引入氨基官能团和柠檬酸分子.分散实验显示,柠檬酸修饰提高了碳纳米管在水中的分散性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号