首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The feeding of concentrate-rich diets may lead to microbial imbalances and dysfermentation in the rumen. The main objective of this study was to determine the effects of supplementing phytogenic compounds (PHY) or autolyzed yeast (AY) on rumen fermentation and microbial abundance in cows intermittently fed concentrate-rich diets. The experiment was carried out as an incomplete 3 × 4 Latin square design, with 8 nonlactating rumen-fistulated Holstein-Friesian cows. The cows were randomly assigned to a concentrate diet that was either not supplemented (CON), or supplemented with PHY or AY. Each of the 4 consecutive experimental periods was composed of a 1-wk roughage-only diet (RD), 6-d gradual concentrate increase, followed by 1 wk of 65% concentrate (dry matter basis; Conc I), and 1 wk of RD and a final 2-wk 65% concentrate (dry matter basis; Conc II) phase. Digesta samples were collected from the rumen mat for bacterial 16S rRNA gene Illumina MiSeq (Illumina, Balgach, Switzerland) sequencing, and samples of particle-associated rumen liquid were obtained for measuring short-chain fatty acids, lactate, ammonia, and pH during RD (d 6), Conc I (d 19), and Conc II (d 39). The concentrate feeding caused a decrease of overall bacterial diversity indices, especially during Conc I. The genera Ruminococcus, Butyrivibrio, and Coprococcus were decreased, whereas Prevotella, Megasphaera, Lachnospira, and Bacteroides were increased in abundance. Supplementation of both feed additives increased the abundance of gram-positive and decreased that of gram-negative bacteria. Supplementation of AY enhanced cellulolytic bacteria such as Ruminococcus spp., whereas PHY decreased starch and sugar fermenters including Bacteroides spp., Shuttleworthia spp., and Syntrophococcus spp. Moreover, PHY supplementation increased butyrate percentage in the rumen in both concentrate phases. In conclusion, intermittent high-concentrate feeding altered the digesta-associated rumen bacterial community and rumen fermentation with more significant alterations found in Conc I than in Conc II. The data also showed that both feed additives had the most significant modulatory effects on the bacterial community, and their subsequent fermentation, during periods of low pH.  相似文献   

3.
The primary objective of this experiment was to determine whether lactating dairy cows that are at high (HR) or low (LR) risk for experiencing ruminal acidosis, because of their diet and stage of lactation, differ in their response to an acidosis challenge. A secondary objective was to determine whether the severity of acidosis changes with repeated challenges. The experiment was a completely randomized design with 2 groups (risk scenarios, HR vs. LR) and 3 periods corresponding to 3 repeated acidosis challenges. Eight lactating ruminally cannulated cows were assigned to 1 of 2 groups: HR, early lactation cows fed a 45% forage diet, or LR, midlactation cows fed a 60% forage diet. Cows were exposed to 3 acidosis challenges, each separated by 14 d. The challenge consisted of restricting total mixed rations to 50% of ad libitum intake for 24 h, followed by a 1-h meal of 4 kg of ground barley-wheat before allocating the total mixed rations. Ruminal pH was measured continuously for 9 of the 14 d each period using an indwelling system. Subacute acidosis (SARA) was described at 2 thresholds: pH <5.8 and pH <5.5. As expected, HR cows had lower ruminal pH profiles (curves) compared with LR cows: mean pH (5.81 vs. 6.21) and nadir pH (5.13 vs. 5.53). The HR cows also experienced SARA to a greater extent than LR cows during the experiment (pH <5.8, 10.6 vs. 3.5 h/d; pH <5.5, 5.9 vs. 1.6 h/d). The pH profiles of cows in both risk categories decreased with each challenge period; mean pH was 6.13, 6.03, 5.77, and nadir pH was 5.52, 5.34, and 5.14 in periods 1, 2, and 3, respectively. The challenges caused a similar decrease in pH for cows in both risk categories, but because the HR cows had a lower baseline pH, they experienced more severe SARA with each subsequent challenge. Feed restriction the day before administering the acidosis challenge caused ruminal pH to gradually increase. On the challenge day, the entire grain allotment was consumed by all cows in period 1, six cows in period 2, and only 3 cows in period 3. The pH plummeted immediately after each grain challenge. Ruminal pH remained very low during the first day after the challenge for all cows, but LR cows began their recovery more quickly than HR cows. Regardless of risk category, with each successive challenge, the pH decrease on the challenge day was more severe: nadir pH on the challenge day was 5.19, 5.07, and 4.90 and duration of SARA (pH <5.8) was 12.2, 13.4, and 15.8 h/d in periods 1, 2, and 3. This study indicates that cows become more prone to acidosis over time even though they decrease intake of the challenge grain to avoid acidosis. The severity of each subsequent bout of acidosis increases, especially for cows fed diets low in physically effective fiber and at high acidosis risk. Therefore, a bout of acidosis that occurs due to improper feed delivery or poor diet formulation can have long-term consequences on cow health and productivity.  相似文献   

4.
Rumen health is of vital importance in ensuring healthy and efficient dairy cattle production. Current feeding programs for cattle recommend concentrate-rich diets to meet the high nutritional needs of cows during lactation and enhance cost-efficiency. These diets, however, can impair rumen health. The term “subacute ruminal acidosis” (SARA) is often used as a synonym for poor rumen health. In this review, we first describe the physiological demands of cattle for dietary physically effective fiber. We also provide background information on the importance of enhancing salivary secretions and short-chain fatty acid absorption across the stratified squamous epithelium of the rumen; thus, preventing the disruption of the ruminal acid–base balance, a process that paves the way for acidification of the rumen. On-farm evaluation of dietary fiber adequacy is challenging for both nutritionists and veterinarians; therefore, this review provides practical recommendations on how to evaluate the physical effectiveness of the diet based on differences in particle size distribution, fiber content, and the type of concentrate fed, both when the latter is part of total mixed ration and when it is supplemented in partial mixed rations. Besides considering the absolute amount of physically effective fiber and starch types in the diet, we highlight the role of several feeding management factors that affect rumen health and should be considered to control and mitigate SARA. Most importantly, transitional feeding to ensure gradual adaptation of the ruminal epithelium and microbiota; monitoring and careful management of particle size distribution; controlling feed sorting, meal size, and meal frequency; and paying special attention to primiparous cows are some of the feeding management tools that can help in sustaining rumen health in high-producing dairy herds. Supplementation of feed additives including yeast products, phytogenic compounds, and buffers may help attenuate SARA, especially during stress periods when the risk of a deficiency of physically effective fiber in the diet is high, such as during early lactation. However, the usage of feed additives cannot fully compensate for suboptimal feeding management.  相似文献   

5.
Feeding grain-rich diets often results in subacute ruminal acidosis (SARA), a condition associated with ruminal dysbiosis and systemic inflammation. Yet, the effect of SARA on hindgut microbiota, and whether this condition is aggravated by exogenous immune stimuli, is less understood. Therefore, the aims of this study were to determine the effects of an intermittent high-grain SARA model on the hindgut microbial community, and to evaluate whether the effects of SARA on the fecal microbiome and fermentation were further affected by an intramammary lipopolysaccharide (LPS) challenge. A total of 18 early-lactating Simmental cows were divided into 3 groups (n = 6); 2 were fed a SARA-inducing feeding regimen (60% concentrate), 1 was fed a control (CON) diet (40% concentrate). On d 30, 1 SARA group (SARA-LPS) and the CON group (CON-LPS) were intramammarily challenged with a single dose of 50 µg of LPS from Escherichia coli O26:B6, whereas the remaining 6 SARA cows (SARA-PLA) received a placebo. Using a longitudinal randomized controlled design, with grouping according to parity and days in milk), statistical analysis was performed with baseline measurements used as a covariate in a mixed model procedure. The SARA-inducing feeding challenge resulted in decreased fecal pH and increased butyrate as a proportion of total short-chain fatty acids in the feces. On d 30, SARA-challenged cows had decreased fecal diversity as shown by the Shannon and Chao1 indices and a decrease in the relative abundance of Euryarchaeota and cellulolytic genera, and numerical increases in the relative abundance of several Firmicutes associated with starch and secondary fermentation. The LPS challenge did not affect the fecal pH and short-chain fatty acids, but increased the Chao1 richness index in an interaction with the SARA challenge, and affected the relative abundance of Verrucomicrobia (1.13%), Actinobacteria (0.19%), and Spirochaetes (0.002%), suggesting an effect on the microbial ecology of the hindgut during SARA conditions. In conclusion, the SARA-inducing feeding regimen promoted important microbial changes at d 30, including reduced diversity and evenness compared with CON, whereas the external LPS challenge led to changes in the microbial community without affecting fecal fermentation properties.  相似文献   

6.
High-concentrate diets can lead to subacute ruminal acidosis and are known to result in changes of the ruminal fermentation pattern and mammary secretion of fatty acids. The objective of this paper is to describe modifications in milk fatty acid proportions, particularly odd- and branched-chain fatty acids and rumen biohydrogenation intermediates, associated with rumen parameters during a 6-wk subacute ruminal acidosis induction protocol with 12 ruminally fistulated multiparous cows. The protocol involved a weekly gradual replacement of a standard dairy concentrate with a wheat-based concentrate (610 g of wheat/kg of concentrate) during the first 5 wk and an increase in the total amount of concentrate in wk 6. Before the end of induction wk 6, cows were switched to a control diet because 7 cows showed signs of sickness. The pH was measured continuously by an indwelling pH probe. Milk and rumen samples were taken on d 2 and 7 of each week. Data were analyzed using a linear mixed model and by principal component analysis. A pH decrease occurred after the first concentrate switch but rumen parameters returned to the original values and remained stable until wk 5. In wk 5 and 6, rumen pH values were indicative of increasing acidotic conditions. After switching to the control diet in wk 6, rumen pH values rapidly achieved normal values. Odd- and branched-chain fatty acids and C18:1 trans-10 increased with increasing amount of concentrate in the diet, whereas C18:1 trans-11 decreased. Four fatty acids [C18:1 trans-10, C15:0 and C17:0+C17:1 cis-9 (negative loadings), and iso C14:0 (positive loading)] largely correlated with the first principal component (PC1), with cows spread along the PC1 axis. The first 4 wk of the induction experiment showed variation across the second principal component (PC2) only, with high loadings of anteiso C13:0 (negative loading) and C18:2 cis-9,trans-11 and C18:1 trans-11 (positive loadings). Weeks 5 and 6 deviated from PC2 and tended toward the negative PC1 axis. A discriminant analysis using a stepwise approach indicated the main fatty acids discriminating between the control and acidotic samples as iso C13:0, iso C16:0, and C18:2 cis-9,trans-11 rather than milk fat content or C18:1 trans-10, which have been used before as indicators of acidosis. This shows that specific milk fatty acids have potential in discriminating acidotic cases.  相似文献   

7.
Subacute ruminal acidosis (SARA) increases lipopolysaccharide endotoxin in the rumen, which might translocate into the systemic circulation, triggering a cascade of clinical and immunological alterations. The objective of this study was to characterize the clinical immune and metabolic responses to ruminal-derived lipopolysaccharide in nonlactating cows induced with SARA using 2 challenges, a grain-based SARA challenge (GBSC) or an alfalfa-pellet SARA challenge (APSC). Six dry, nonlactating Holstein cows were used in a 3 × 3 Latin square arrangement of treatments with 4-wk experimental cycles. All cows received the control diet containing 70% forage and 30% mixed concentrates (dry matter basis) for 3 wk. In wk 4, cows received a control diet, GBSC (38% wheat-barley pellets, 32% other mixed concentrate, and 30% forages), or APSC (45% mixed concentrate, 32% alfalfa pellets, and 23% other forages). Total plasma proteins and immunology-related proteins, acute phase proteins, blood cells, serum chemistry, mRNA gene expression of peripheral blood cell surface markers, and selected proinflammatory cytokines were evaluated. Ruminal pH was lower in both groups with induced SARA compared with a control group. Ruminal endotoxins were higher in GBSC; however, plasma endotoxin was not detected in any study group. No significant differences in feed intake, rectal temperature, white blood cell counts, or differentials were found between control and SARA challenge groups; changes in glucose, urea, Ca, and Mg were observed in SARA groups. Total plasma proteins were lower in both SARA groups, and acute phase proteins were higher in GBSC. The expression of CD14, MD2, and TLR4 mRNA in peripheral blood leukocytes was not affected by SARA induction. The induction of SARA as a result of GBSC or APSC challenge was successful; however, LPS was not detected in plasma. Changes in clinical, metabolic, and inflammatory responses were not observed in the SARA-challenged cows, suggesting that, in this study, SARA was not associated with a systemic response to inflammation.  相似文献   

8.
The hindgut epithelial barrier plays an important role in maintaining absorption and immune homeostasis in ruminants. However, little information is available on changes in colon epithelial barrier structure and function following grain-induced subacute ruminal acidosis (SARA). The objective of this study was to investigate the effects of grain-induced SARA on colon epithelial morphological structure, permeability, and gene expression involved in epithelial barrier function. Twelve mid-lactating (136 ± 2 d in milk; milk yield = 1.68 ± 0.15 kg/d) Saanen dairy goats with 62.13 ± 4.76 kg of body weight were randomly divided into either the control (CON) treatment (n = 6) or SARA treatment (n = 6). The CON goats were fed a basal diet with a nonfiber carbohydrates to neutral detergent fiber ratio of 1.15 for 60 d. The SARA goats were fed 4 diets with increasing nonfiber carbohydrates to neutral detergent fiber ratio at 1.15, 1.49, 2.12, and 2.66 to induce SARA, with each diet (referred to as period) being fed for 15 d, including 12 d for adaptation and 3 d for sampling. Continuous ruminal pH recordings were used to diagnose the severity of SARA. Additionally, colonic tissues were collected to evaluate the epithelial morphological structure, permeability, and expression of tight junction proteins using transmission electron microscopy, Ussing chamber, quantitative real-time PCR, and Western blotting. Profound disruption in the colonic epithelium was mainly manifested as the electron density of tight junctions decreased, intercellular space widened, and mitochondria swelled in SARA goats. Colon epithelial short-circuit current, tissue conductance, and the mucosal-to-serosal flux of fluorescein isothiocyanate-dextran 4 kDa were increased and potential difference was decreased in SARA goats compared with CON goats. Subacute ruminal acidosis increased mRNA and protein expression levels of CLDN1 and OCLN in the colonic epithelium. Overall, the data of the present study demonstrate that SARA can impair the barrier function of the colonic epithelium at both structural and functional levels, which is associated with severe epithelial structural damage and increased permeability and changes in the expression of tight junction proteins.  相似文献   

9.
Twenty-four German Merino sheep (72.3 ± 10.1 kg of body weight) were fed an all-hay diet and assigned to either the subacute ruminal acidosis (SARA) treatment (n = 17) or sham treatment (n = 7). The SARA sheep were orally dosed with a 2.2 M glucose solution to supply 5 g of glucose/kg of body weight, whereas sham sheep received an equal volume of water. Ruminal pH was measured for 48 h before and 3 h after the oral dose. Sheep were then killed and ruminal epithelia from the ventral sac were mounted in Ussing chambers. The serosal-to-mucosal flux rate of partially 3H-labeled mannitol (Jmannitol-SM), an indicator of barrier function, was measured while epithelia were exposed to 3 sequential in vitro measurement periods lasting 1 h each. The measurement periods consisted of baseline, challenge, and recovery periods and were interspersed by 30-min periods for treatment equilibration. Baseline conditions were pH 6.1 (mucosal solution) and pH 7.4 (serosal solution) with a bilateral osmolarity of 293 mOsm/L. During the challenge period, the mucosal side of the epithelia was exposed to either an acidotic challenge (pH 5.2, osmolarity 293 mOsm/L) or an osmotic challenge (pH 6.1, osmolarity 450 mOsm/L); a third group served as control (pH 6.1, osmolarity 293 mOsm/L). The mucosal buffer solution was replaced for the recovery period. In vivo, sheep on the SARA treatment had lower mean (5.77 vs. 6.67) and nadir (5.48 vs. 6.47) ruminal pH for the 3 h following the oral drench compared with sham sheep, indicating the successful induction of SARA with the oral glucose dose. Despite the marked reduction in pH in vivo, induction of SARA had no detectable effects on the baseline measurements of Jmannitol-SM, tissue conductance (Gt), and short-circuit current (Isc) in vitro. However, reducing mucosal pH to 5.2 in vitro had negative effects on epithelial barrier function in the recovery period, including increased Jmannitol-SM, increased Gt, and decreased Isc. The osmotic challenge increased Jmannitol-SM and Gt and decreased Isc during the challenge period, which was reversible in the recovery period except for slight reduction in Isc. Interactions between the in vitro treatment and measurement period were detected for Jmannitol-SM, Gt, and Isc. These data indicate that a mild episode of SARA (nadir pH, 5.48; duration ruminal pH <5.8, 111 min relative to the 180-min measurement period) does not affect ruminal epithelial barrier function immediately after the episode but that a rapid and more severe acidification (pH 5.2) in vitro increases epithelial permeability following the insult.  相似文献   

10.
The present research aimed at developing practical and feasible models to optimize feeding adequacy to maintain desired rumen pH conditions and prevent subacute ruminal acidosis (SARA) in dairy cows. We conducted 2 meta-analyses, one using data from recent published literatures (study 1) to investigate the prediction of SARA based on nutrient components and dietary physical and chemical characteristics, and another using internal data of our 5 different published experiments (study 2) to obtain adjustments based on cow status. The results of study 1 revealed that physically effective neutral detergent fiber inclusive of particles >8 mm (peNDF >8) and dietary starch [% of dry matter (DM)] were sufficient for predicting daily mean ruminal pH {y = 5.960 – (0.00781 × starch) + (0.03743 × peNDF >8) – [0.00061 × (peNDF >8 × peNDF >8)]}. The model for time of pH suppression (<5.8 for ruminal pH or <6.0 for reticular pH, min/d) can be predicted with additionally including DMI (kg/d): 124.7 + (1.7007 × DMI) + (20.9270 × starch) + (0.2959 × peNDF >8) – [0.0437 × (DMI × starch × peNDF >8)]. As a rule of thumb, when taken separately, we propose 15 to 18% peNDF >8 as a safe range for diet formulation to prevent SARA, when starch or NFC levels are within 20 to 25% and 35 to 40% ranges, respectively. At dietary starch content below 20% of DM, grain type was insignificant in affecting ruminal pH. However, increasing dietary starch contents by using corn as the sole grain source could lead to more severe drops of pH compared with using grain mix based on barley and wheat, as underlined by an interaction between starch content and grain type. Data from study 2 emphasized an increased risk of SARA for cows in the first and second lactation with lower mean pH (0.2 units) and double amounts of time at pH <5.8 compared with the cows with ≥3 parities. Given that a lower ruminal pH is expected in these high-risk cows, it is advisable to keep the lower end of recommended starch (20%) and higher peNDF >8 (18%) contents in the diet of these cows. Overall, the present study underlines the possibility of predicting SARA based on dietary factors including peNDF >8 and starch contents, as well as DMI of the cows, which can be practically implemented for optimal diet formulation for dairy cows. With more data available, future studies should attempt to improve the predictions by including additional key dietary and cow factors in the models.  相似文献   

11.
The objective of this experiment was to characterize the relationship among rumen fermentation variables, milk fatty acid profile, and dietary physically effective neutral detergent fiber (peNDF) content in a study that controlled for the potential confounding effects of dissimilar dry matter intake among treatments. Ten multiparous Xinong Saanen dairy goats were divided into 2 groups with 2 ruminally cannulated goats per group. Goats in each group were assigned to 1 of 2 dietary treatments (high and low peNDF) according to a 2 × 2 crossover design with 2 periods. The peNDF content of alfalfa hay (proportion of neutral detergent fiber retained on an 8.0-mm screen) was 42.1% for the high-peNDF and 14.5% for the low-peNDF group. To ensure similar dry matter intake, each morning the amount of alfalfa hay consumed on the prior day by the high-peNDF group was determined (amount offered minus morning refusals), and this was the amount of hay offered to the low-peNDF group that day. Each adaptation period consisted of 21 d, followed by a 9-d sampling period. Dry matter intake and milk production and composition were similar between treatments. Milk energy efficiency increased with low dietary peNDF. Duration of pH below 5.60 was longer for goats fed the low-peNDF ration compared with the high-peNDF ration (4.08 vs. 0.41 h/d); however, mean rumen pH (6.05 vs. 6.13) was not different between treatments. Reducing dietary peNDF increased rumen total volatile fatty acids (114.6 vs. 95.1 mM) and decreased chewing time (404 vs. 673 min/d), but did not affect the ratios of acetate, propionate, and butyrate. The relative abundance of Fibrobacter succinogenes and Ruminococcus flavefaciens increased with reduced dietary peNDF, but Ruminococcus albus proportions were not influenced by treatment. Reducing dietary peNDF decreased the proportion of iso C14:0, iso C15:0, and trans-11 C18:1 in milk fat, whereas the iso C17:0 and trans-10 C18:1 increased. This study demonstrated that low dietary peNDF in dairy goats increases rumen volatile fatty acids, reduces chewing time, and is correlated to the amount of F. succinogenes and R. flavefaciens.  相似文献   

12.
13.
The current study was carried out to assess 2 hypotheses: (1) cows differ in susceptibility to a subacute ruminal acidosis (SARA) challenge, and (2) the milk fatty acid (FA) pattern can be used to differentiate susceptible from nonsusceptible cows. For this, 2 consecutive experiments were performed. During experiment 1, the milk FA pattern was determined on 125 cows fed an increasing amount of concentrate during the first 4 wk in milk (WIM). The coefficient of variation of several SARA indicative milk FA (i.e., C15:0, C18:1 trans-10, C18:2 cis-9,trans-11, and C18:1 trans-10 to C18:1 trans-11 ratio) increased, indicating that cows reacted differently upon the concentrate build-up. A first grouping was based on the milk fat C18:1 trans-10 proportion in the third WIM. Fifteen cows with the highest proportion of the latter FA (HT10) and their counterparts with low C18:1 trans-10 and equal parity distribution (LT10) were compared, which revealed that milk fat content and milk fat to protein ratio were lower for the HT10 group. From each of the HT10 and LT10 groups, 5 animals were selected for experiment 2. The subselection of the HT10 group, referred to as HT10s, showed a high proportion of C18:1 trans-10 at 3 WIM (>0.31 g/100 g of FA), a high level of C15:0 (on average ≥1.18 g/100 g of FA over the 4 WIM), and a sharp decrease of C18:1 trans-11 (Δ ≥ 0.25 g/100 g of FA during the 4 WIM). Their counterparts (LT10s) had a low milk fat C18:1 trans-10 proportion at 3 WIM (<0.23 g/100 g of FA), an average C15:0 proportion of 0.99 g/100 g of FA or lower, and a rather stable C18:1 trans-11 proportion. The HT10s group was hypothesized to be more susceptible to a SARA challenge, achieved by increasing amounts of rapidly fermentable carbohydrates in experiment 2. The HT10s cows had a lower nadir, mean, and maximum reticulo-ruminal pH; longer period of reticulo-ruminal pH below 6.0; and higher daily reticulo-ruminal pH variation compared with LT10s cows. Throughout experiment 2, HT10s and LT10s cows differed in levels of SARA indicative milk FA. Five animals, including one LT10s and 4 HT10s cows, experienced SARA, defined as reticulo-ruminal pH <6.0 for more than 360 min/d. These results indicate that it is possible to distinguish cows with different susceptibility to a SARA challenge within a herd by monitoring the milk FA composition when cows receive the same diet.  相似文献   

14.
The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent “community fingerprinting” technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P < 0.01) in prefeed ruminal pH (mean = 6.88 vs. 6.14) and prefeed total VFA concentration (mean = 57 vs. 77 mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24 h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean = 6.69 vs. 6.20) and total VFA concentration (mean = 101 vs. 136 mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24 h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean = 6.47) and lower prefeed VFA concentration (mean = 120 mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal.  相似文献   

15.
The objective of this study was to validate the efficacy of a radiotelemetric bolus (RTB) to detect changes in ruminal temperature resulting from (1) systemic illnesses that are associated with febrile responses and (2) subacute ruminal acidosis (SARA). Eight rumen-fistulated, lactating Holstein cows (586 ± 37 kg of body weight, 106 ± 18 d in milk) were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement. Each period consisted of 21 d. The factors were 2 diets, a moderate forage:concentrate [MFC; 52:48; % of dry matter (DM)] or a high forage:concentrate (HFC; 65:35, % of DM) total mixed ration, and a challenge with a single intramammary injection of lipopolysaccharide (LPS; 100 μg derived from Escherichia coli 0111:B4) or no LPS (sterile saline). Thus, the 4 resulting treatments were (1) MFC with LPS challenge, (2) MFC with saline, (3) HFC with LPS challenge, and (4) HFC with saline. Cows were fed at 0800 and 1400 h daily. Cows received the intramammary injections at 0900 h of d 21. Ruminal pH and ruminal temperature were also measured on d 21 every minute via an indwelling logging system that resided in the ventral sac of the rumen and via a radiotelemetric bolus that resided in the reticulum. Vaginal temperature was also recorded every minute via temperature loggers. Prior to LPS injection, the duration of rumen pH below 5.6 (indicative of SARA) was higher in cows receiving MFC than cows receiving HFC (148 ± 24 and 62 ± 24 min/d, respectively). The temperature measured at the same time via RTB was higher for MFC than HFC cows (167 ± 21 vs. 104 vs. 21 min/d above 38.8 °C, respectively). The following day, cows challenged with LPS showed signs of mastitis within the injected quarters, depressed DM intake, decreased milk yield, and a peak vaginal temperature of 41.3 ± 0.1 °C 5.5 h after the LPS injection. The RTB system successfully detected a fever response parallel to that measured by the vaginal loggers but temperature peak detected by RTB was, on average, 0.5 °C lower than that detected by the vaginal logger. Although the RTB system was able to detect a temperature response to the diet effect before LPS challenge, it was unable to detect this effect during the LPS challenge, likely because cows receiving the LPS challenge had decreased feed consumption. In conclusion, radiotelemetry has the potential to improve the detection of SARA and fever on farm.  相似文献   

16.
《Journal of dairy science》2022,105(9):7141-7160
Subacute ruminal acidosis (SARA) is assumed to be a common disease in high-yielding dairy cows. Despite this, the epidemiological evidence is limited by the lack of survey data. The prevalence of SARA has mainly been determined by measuring the pH of ruminal fluid collected using rumenocentesis. This may not be sufficiently accurate, because the symptoms of SARA are not solely due to ruminal pH depression, and ruminal pH varies among sites in the rumen, throughout a 24-h period, and among days. The impact of SARA has mainly been studied by conducting SARA challenges in cows, sheep, and goats based on a combination of feed restriction and high-grain feeding. The methodologies of these challenges vary considerably among studies. Variations include differences in the duration and amount of grain feeding, type of grain, amount and duration of feed restriction, number of experimental cows, and sensitivity of cows to SARA challenges. Grain-based SARA challenges affect gut health. These effects include depressing the pH in, and increasing the toxin content of, digesta. They also include altering the taxonomic composition of microbiota, reducing the functionality of the epithelia throughout the gastrointestinal tract (GIT), and a moderate inflammatory response. The effects on the epithelia include a reduction in its barrier function. Effects on microbiota include reductions in their richness and diversity, which may reduce their functionality and reflect dysbiosis. Changes in the taxonomic composition of gut microbiota throughout the GIT are evident at the phylum level, but less evident and more variable at the genus level. Effects at the phylum level include an increase in the Firmicutes to Bacteroidetes ratio. More studies on the effects of a SARA challenge on the functionality of gut microbiota are needed. The inflammatory response resulting from grain-based SARA challenges is innate and moderate and mainly consists of an acute phase response. This response is likely a combination of systemic inflammation and inflammation of the epithelia of the GIT. The systemic inflammation is assumed to be caused by translocation of immunogenic compounds, including bacterial endotoxins and bioamines, through the epithelia into the interior circulation. This translocation is increased by the increase in concentrations of toxins in digesta and a reduction of the barrier function of epithelia. Severe SARA can cause rumenitis, but moderate SARA may activate an immune response in the epithelia of the GIT. Cows grazing highly fermentable pastures with high sugar contents can also have a low ruminal pH indicative of SARA. This is not accompanied by an inflammatory response but may affect milk production and gut microbiota. Grain-based SARA affects several aspects of gut health, but SARA resulting from grazing high-digestible pastures and insufficient coarse fiber less so. We need to determine which method for inducing SARA is the most representative of on-farm conditions.  相似文献   

17.
The objective of the study was to determine the effect of active dry Saccharomyces cerevisiae (ADSC) supplementation on dry matter intake, milk yield, milk components, ruminal pH, and microbial community during a dietary regimen that leads to subacute ruminal acidosis (SARA). Sixteen multiparous, rumen-cannulated lactating Holstein cows were randomly assigned to 1 of 2 dietary treatments that included ADSC (Biomate; AB Vista, Marlborough, UK; 8 × 1010 cfu/head per day) or control. During wk 1 to 6, all cows received a high-forage (HF) diet (77:23, forage:concentrate). Cows were then abruptly switched during wk 7 to a high-grain (HG) diet (49:51, forage:concentrate) and remained on the HG until the end of wk 10. Feed intake and milk yields were recorded daily. Ruminal pH was recorded continuously using an indwelling system for 1 to 2 d per week during the pre-experimental phase, and wk 6, 7, and 10. Ruminal digesta samples were collected at the end of the experiment and analyzed for relative change in microbial communities using real-time quantitative PCR. Cows were considered to have SARA if the duration below pH 5.6 was ≥300 min/d. Ruminal pH during wk 6 (HF plateau) was not different across treatments (15 ± 46 min/d at pH <5.6). The dietary regimen successfully induced SARA during wk 7 (transition from HF to HG diet), and ruminal pH (551 ± 46 min/d at pH <5.6) was not different across treatments. However, cows receiving ADSC had an improved ruminal pH (122 ± 57 vs. 321 ± 53 min/d at pH <5.6) during wk 10 (HG plateau) compared with control. Additionally, cows receiving ADSC had a better dry matter intake (23.3 ± 0.66 vs. 21.6 ± 0.61 kg/d) and 4% fat-corrected milk yield (29.6 ± 1.2 vs. 26.5 ± 1.2 kg/d) than control cows during the HG phase (wk 8 to 10). During HG feeding, cows receiving ADSC had greater total volatile fatty acid and propionate concentrations (175 ± 7.5 vs. 154 ± 7.5 and 117 ± 6.1 vs. 94 ± 5.7 mM for ADSC and control, respectively) and lower acetate:propionate ratio (0.26 ± 0.5 vs. 0.36 ± 0.05 for ADSC and control, respectively). Microbial analyses conducted on samples collected during wk 10 showed that cows supplemented with S. cerevisiae had a 9-fold, 2-fold, 6-fold, 1.3-fold, and 8-fold increase in S. cerevisiae, Fibrobacter succinogenes, Anaerovibrio lipolytica, Ruminococcus albus, and anaerobic fungi, respectively, which suggested an increase in cellulolytic microbes within the rumen. Cows supplemented with ADSC had 2.2-fold reduction in Prevotella albensis, which is a gram-negative bacterium predominant during SARA. Prevotella spp. are suggested to be an important source of lipopolysaccharide responsible for inflammation within the rumen. Cows supplemented with ADSC had a 2.3-fold increase in Streptococcus bovis and a 12-fold reduction in Megasphaera elsdenii. The reduction in M. elsdenii may reflect lower concentration of lactic acid within the rumen for ADSC cows. In conclusion, ADSC supplementation to dairy cows was demonstrated to alleviate the condition of SARA caused by abrupt dietary changes from HF to HG, and can potentially improve rumen function, as indicated by greater numbers of cellulolytic microorganisms within the rumen.  相似文献   

18.
We investigated the effects of active dried Saccharomyces cerevisiae (ADSC) on ruminal pH, fermentation, and the fluid bacterial community during the short-term ruminal acidosis challenge. Five rumen-fistulated male Holstein calves (147.0 ± 5.8 kg of body weight; 3.6 ± 0.2 mo of age) were used in a crossover design, and 0 g (control group, n = 5) or 2 g (SC group, n = 5) of ADSC (1 × 1010 cfu/g) was administered twice daily for 21 consecutive days. Calves were fed a high-forage diet during the first 15 d (d –14 to d 0; prechallenge), a high-grain diet for 2 d (d 1 and 2; ruminal acidosis challenge), and a high-forage diet for 4 d (d 3 to 6; postchallenge). Ruminal pH was measured continuously. Rumen fluid samples were collected once daily (0800 h) on d 0, 3, 4, and 6 and twice daily (0800 and 1100 h) on d 1 and 2. Bacterial DNA was extracted from fluid samples collected on d 0 and 3. The 24-h and 1-h mean ruminal pH was significantly depressed during the ruminal acidosis challenge in each group, although the changes were more severe in the SC group, consistent with a significant increase in lactic acid on d 2 (1100 h) compared with d 0 and a significantly higher proportion of butyric acid on d 2 (1100 h) compared with the control group. Feeding a high-grain diet caused a decrease in bacterial diversity due to high acidity in both groups. The relative abundances of the genus Bifidobacterium and operational taxonomic unit (OTU) 3 (Bifidobacterium species) increased significantly in both groups but were higher in the SC group. Correlation analyses indicated that OTU3 (Bifidobacterium species) were positively correlated with lactic acid concentration and that OTU1 (Prevotella species) and OTU5 (Succinivibrio species) were correlated with the proportion of butyric acid. These results suggest that ADSC supplementation induced the intense decreases in ruminal pH by increased butyric and lactic acid production through a high-grain diet fermentation by rumen fluid bacterial species during the short-term ruminal acidosis challenge in Holstein calves after weaning.  相似文献   

19.
《Journal of dairy science》2022,105(5):3969-3987
Both ruminal microbial structure and functionality might play a role in inter-individual variation in susceptibility for subacute rumen acidosis (SARA) observed in dairy cows. The aims of this study were to determine whether differences between cows with distinct SARA susceptibility were reflected in distinct (1) ruminal microbial communities, (2) salivary bacterial communities, and (3) fermentative capacity of ruminal microbiota assessed in vitro. To test this hypothesis, rumen samples were collected via an esophageal tube on 21 d postpartum from 38 multiparous Holstein cows, which were classified into 4 groups differing in median and mean time of reticular pH below 6 as well as area under the curve of pH below 6.0. During the 21 d postpartum, all cows within a group fulfilled following criteria: susceptible (S, n = 10; mean or median ≥180 min/d), moderately susceptible (MS, n = 7; 60 min/d < mean time of pH below 6 < 180 min/d, and median time of pH below 6 <180 min/d), moderately unsusceptible (MU, n = 11; 10 min/d < mean < 60 min/d, and median time of pH below 6 ≤30 min/d), or unsusceptible (U, n = 10; median = 0 min/d, and mean <10 min/d). Groups did not differ in total daily dry matter intake nor in total, roughage, or concentrate intake during daily 6-h time intervals. Rumen bacterial α-diversity did not differ among groups, but β-diversity varied and bacterial 16S rRNA gene copy numbers were lower in S compared with U cows. The relative abundance of genera Streptococcus, Sharpea, Prevotellaceae_YAB2003, Succinivibrionaceae_UCG-001, Ruminococcus, and Ruminococcaceae_UCG-001 were higher in S compared with U cows. In contrast, Lachnospiraceae_ND3007 and Oscillospiraceae_V9D2013 were more abundant in U cows. Although pH-associated, inter-animal differences were also observed in the salivary bacteria, common differences in ruminal and salivary bacterial genera were limited. The functionality of the rumen microbiota was evaluated in vitro through exposure of the microbial inoculum of S and U cows to an anaerobic buffer at pH 5.8 and 6.8, in the presence of sterile supernatant of their own and of dry cows' rumen fluid (2 × 2 design). Generally, the S inoculum produced more volatile fatty acids, except at low pH with dry cows' supernatant, where volatile fatty acid production was completely impaired and lactate accumulation was highest. Compared with the microbes of U cows, microbes of S cows showed less fermentative activity in situations with 2 stress factors (low pH and an unfamiliar environment, i.e., rumen fluid supernatant of dry cows).  相似文献   

20.
The objectives of this study were to determine whether feeding behavior is different between cows at higher or lower risk for subacute ruminal acidosis (SARA) and whether increasing feeding frequency could be used to reduce the severity of SARA in higher-risk cows. In preliminary studies, 16 ruminally cannulated lactating cows were fed high-grain diets once per day to increase the risk of SARA. After a 17-d diet adaptation, ruminal pH was measured every 30 s over 24 h. Cows were classified as higher-risk (n = 7) or lower-risk (n = 9) for SARA based on an acidosis index (area of pH <5.8/dry matter intake). Feeding behavior was recorded every 5 min over the same 24 h. The 24-h observation period was analyzed in 3 periods of 8 h after feeding. Although there was no significant difference in overall dry matter intake, higher-risk cows spent more time eating in the first 8-h period after feeding than lower-risk cows (186 vs. 153 min) and less time eating in the third 8-h period (19 vs. 43 min). In the primary experiment, 8 ruminally cannulated lactating cows were fed a high-grain diet once per day (1×; 0800 h) or 3 times per day (3×; 0800, 1500, and 2000 h) in a crossover design with 21-d periods (16 d of treatment adaptation and 5 d of data collection). Rumen pH and feeding behavior were measured over 72 h. Behavior data were summarized separately for the 3 periods (0800 to 1500, 1500 to 2200, and 2200 to 0800 h). Four cows were categorized as higher-risk and 4 as lower-risk, based on their acidosis index. The 3× feeding reduced eating time between 0800 and 1500 h (99 vs. 145 min) and increased eating time between 2200 and 0800 h (76 vs. 43 min) for all cows, regardless of category, compared with 1× feeding. For higher-risk cows, 3× feeding reduced the area below pH 5.8 (51 vs. 98 pH × min/d), but it did not affect rumen pH for the lower-risk cows. Milk yield was not different between groups, but 3× feeding increased milk fat yield (1.22 vs. 1.08 kg/d) for all cows, regardless of category, compared to 1× feeding. Our results suggest that cows at higher risk for SARA eat less evenly throughout the day; increasing feeding frequency may reduce the severity of SARA in higher-risk cows and may also increase milk fat yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号