首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this on-farm study was to determine the effect of corn planting density on the nutritional quality of whole-plant corn for silage. This study was performed in a commercial 1,900-cow dairy farm located in Piedritas (Buenos Aires, Argentina). Two commercial hybrids (A and B) were planted in experimental plots within a cornfield destined for corn silage. Hybrids were sown at a theoretical seeding rate of 60,000, 70,000, 80,000, and 90,000 seeds/ha in 4 replicates per hybrid. Plots were eight 50-m-long rows separated by 52 cm. Corn was planted with a no-till seeder equipped with a pneumatic dosing machine. Ten plants within each plot were cut by hand at 15 cm above ground. Whole plants were chopped, weighed, mixed thoroughly, and frozen until analysis. Nutritional composition was determined by near-infrared reflectance spectroscopy. Harvesting occurred at one-quarter milk-line [31.4% dry matter (DM)] and one-half milk-line (34.5% DM) stages of maturity for hybrids B and A, respectively. No interactions between hybrid and planting density were observed for any of the variables of interest. Planting density did not affect either plant DM weight or DM, crude protein, neutral detergent fiber, acid detergent fiber, or starch concentrations of whole-plant corn. Dry matter yield was significantly increased at higher planting densities. The similar per-plant biomass and nutritional quality among different densities can be explained by the abundant precipitation observed during this growing season (719 mm since the beginning of fallow until harvest). In conclusion, greater yields of silage can be obtained by increasing corn planting density without affecting its nutritional composition, although the effect of planting density with limiting resources (e.g., precipitation) still needs to be elucidated.  相似文献   

2.
The effects of replacing chopped alfalfa hay with alfalfa silage in a total mixed ration containing barley grain and corn silage on production and rumen conditions were investigated. Cows received three diets that all contained (dry matter basis) 38.5% barley grain-based energy supplement, 30.5% corn silage, 17.0% protein supplement, and 4.2% sunflower seeds. One diet contained (dry matter basis) 9.8% of chopped alfalfa hay and no alfalfa silage. One diet contained (dry matter basis) 4.9% chopped alfalfa hay and 4.9% alfalfa silage. One diet contained (dry matter basis) 9.8% of alfalfa silage and no chopped alfalfa hay. Contents of crude protein, neutral detergent fiber, acid detergent fiber, and starch, averaged across diets, were 16.7, 41.3, 21.1, and 24.4% DM, respectively, and did not differ significantly among diets. Replacing chopped alfalfa hay with alfalfa silage decreased the proportion of dietary DM passing through the 8-mm screen of the Penn State Particle Separator from 61.9 to 55.2% dry matter and significantly increased dietary physical effective NDF (peNDF) content, calculated as the NDF retained by the two screens of the Penn State Particle Separator, from 20.1 to 23.3% DM. Replacing chopped alfalfa hay with alfalfa silage also reduced dietary DM content, increased rumen pH from 6.27 to 6.47, reduced volatile fatty acid concentrations, numerically increased milk fat concentration and milk fat yield. Milk yield, milk protein concentration, dry matter intake, and rumen ammonia concentration were not affected.  相似文献   

3.
Corn silage and high-moisture corn grain are commonly recognized as risk factors for biohydrogenation-induced milk fat depression and may be due to the high concentration of linoleic acid (C18:2) in corn. Corn silage and corn grain have a low concentration of fatty acids (FA), but due to their high inclusion rate in diets they contribute substantially to unsaturated FA intake. The first objective of this study was to characterize the contribution of individual plant parts to total FA in whole-plant chopped corn. The second objective was to characterize the variation in FA profile in commercial silage and grain hybrids and evaluate the relationship between FA profile and other nutrients. To determine the location of FA in the corn plant, 4 stalks from 4 different commercial hybrids were separated into stalk, husk and shank, leaves, cob, and kernels. On a dry matter basis, 80.5% of total FA were in the kernels, 11.8% in the leaves, 5.1% in the stalk, 1.7% in the cob, and 1.0% in the husk and shank. More than 96% of the oleic acid (C18:1) and 92.5% of the C18:2 was in the kernels, whereas 71.0% of the linolenic acid (C18:3) was in the leaves. Next, the FA composition of fresh whole-plant chopped corn from 124 silage hybrids and grain from 72 grain hybrids was determined over 2 yr from test plots in Pennsylvania. Last, to extend the characterization, FA composition of whole-plant corn silage from 45 hybrids grown in test plots in South Dakota were characterized. In the fresh whole-plant chopped corn from PA test plots, C18:2 as a percentage of total FA averaged from 48.7% in 2013 (percentiles: 10th = 45.2, 90th = 52.2) and 48.0% in 2014 (percentiles: 10th = 44.1, 90th = 49.4). Concentration of C18:2 in corn grain averaged 57.5% in the 2013 (percentiles: 10th = 53.4, 90th = 60.8) and 56.1% in 2014 (percentiles: 10th = 53.5, 90th = 59.4). In the corn silage from South Dakota, the concentration of C18:2 as percentage of total FA averaged 45.4% (percentiles: 10th = 39.4, 90th = 50.2) and C18:2 concentration as a percent of dry matter averaged 1.1% (percentiles: 10th = 0.76, 90th = 1.41). An increase in the concentration of C18:2 was associated with a decrease in C18:3 in fresh whole-plant chopped corn and with a decrease in C18:1 in corn grain. Total FA and C18:2 (as a percentage of dry matter) were positively correlated with starch and negatively correlated with neutral detergent fiber in both fresh whole-plant chopped corn and corn silage samples, whereas no correlation with these traits was observed for C18:2 as a percentage of total FA. In conclusion, FA concentration and profile of corn silage reflects to a great extent the FA composition of kernels and the proportion of grain in the silage. The variation in C18:2 across hybrids provides the opportunity to develop selection programs to decrease C18:2 in corn silage and grain. Selection based on C18:2 concentration as a percent of total FA is preferred as this trait did not correlate with other nutritional properties.  相似文献   

4.
Three corn hybrids (Pioneer 36F30, Mycogen TMF2450, and Mycogen TMF2404) were compared for yield and quality traits, and lactation performance and apparent digestibility by Holstein cows. The three corn silages were harvested at a target of 33 to 35% dry matter. Before harvest, six corn plants were randomly selected for plant fractionation. Grain-to-stover ratios were 0.92, 0.70, and 0.95 for the 36F30, TMF2450, and TMF2404 corn plants, respectively. Fifty-two multiparous Holstein cows were placed on a 120-d lactation trial after a 21-d covariate diet. Cows were blocked by calving date and randomly assigned within block to one of three dietary treatments, containing approximately 40% (dry matter basis) corn silage. Milk yield, milk components, and dry matter intake did not differ among dietary treatments. In vitro true and neutral detergent fiber digestibilities were numerically higher for TMF2404 than the other corn silage hybrids. Apparent total-tract crude protein and neutral detergent fiber digestibilities, as measured by acid insoluble ash, were higher for TMF2450 than the other two hybrids, but starch digestibility was not different between the corn silage dietary treatments. Although small differences in nutrient content and digestibility existed among corn silage hybrids, inclusion of these leafy hybrids in lactating cow diets at 40% of the dietary dry matter did not have a significant impact on lactation performance of dairy cattle.  相似文献   

5.
Dairy waste fiber was mixed in ratio 1:1 (dry matter basis) with ground alfalfa hay, chopped cornstalks, chopped whole corn plant, or ground corn. Prior to ensiling, mixtures received either no additive, dry cane molasses at 5% of dry matter, urea at 1% of dry matter, dry cane molasses at 5% plus urea at 1% of dry matter, sodium hydroxide at 3.3% of dry matter, or sodium hydroxide at 3.3% plus urea at 1% of dry matter. Lactate concentration of silages increased progressively in those receiving alkali, urea, or molasses. Sodium hydroxide treatment tended to increase unavailable nitrogen of silages. Molasses increased a) digestion rate of acid detergent fiber in alfalfa: dairy waste fiber, and b) digestion coefficients of corn silage: and corn:dairy waste fiber silages. Urea additions resulted in less digestion of stalklage:dairy waste fiber. Addition of soluble nitrogen and energy together often improved digestion over addition of either one alone. Sodium hydroxide was effective in increasing a) digestion of certain fiber fractions of all silages except corn silage: dairy waste fiber and b) digestion rate of corn silage:dairy waste fiber hemicellulose. Addition of urea to alkali-treated corn silage:dairy waste fiber increased digestion of neutral detergent fiber and hemicellulose beyond that of alkali-treated mixtures alone.  相似文献   

6.
The objectives of this experiment were to study the effects of corn hybrid and chop length of whole-plant corn silage (WPCS) on intake, and to quantify ruminal digestive processes that could help to identify factors limiting dry matter intake (DMI). Eight lactating cows and 4 dry cows fitted with a ruminal cannula were randomly assigned to 4 treatments in a 4 x 4 Latin square design with replications for lactating cows and without for ruminally cannulated cows. Treatments were fed in a total mixed ration (TMR) containing 75% WPCS and 25% concentrate. The 4 WPCS differed in the characteristics of 2 conventional hybrids, less degradable vs. more degradable in the rumen and in the chop length, fine vs. coarse. The DMI was measured for all cows, and digestion measurements and chewing activities were recorded with the cannulated cows. With lactating cows, DMI and milk yield varied with corn hybrids but not with chop length. The less degradable hybrid in the rumen was the less ingested. Dry matter intake of dry ears followed the same trend, but the differences between hybrids were lower than that observed with the lactating cows and not significant. Dry matter digestibility in the total tract and rumen fill were not different between hybrids. Ruminal mean retention time was greater for the least degradable hybrid. The rumen fill capacity could explain intake differences between hybrids. Ingestive mastication strongly reduced particle size, and the efficiency of particle size reduction was more important with the coarsely chopped WPCS than the finely chopped ones. The small differences in particle size of material entering the rumen after mastication of WPCS during eating might explain the lack of response for decreasing chop length. Because the rumen fill decreased with the decrease in chop length, rumen fill could not be the only factor responsible for DMI control of WPCS.  相似文献   

7.
We studied the effects of damaging ears of corn in the field prior to harvest and the use of various additives on the production of selected mycotoxins, silage fermentation, and aerobic stability of whole plant corn. In experiment 1, ears of corn were undamaged or were slashed with a knife 7 d before harvesting, exposing damaged kernels to the environment. Corn plants were harvested (about 35% DM) and treated in a 2 × 2 factorial arrangement of treatments. Treatments were undamaged or damaged plants, untreated or treated with Lactobacillus buchneri 40788 (400,000 cfu/g of fresh forage) and Pediococcus pentosaceus (100,000 cfu/g). Damaging ears prior to harvest increased the amount of fumonisin but decreased the amount of starch in harvested corn plants. After ensiling, corn silage made from plants damaged before harvest had lower starch but greater concentrations of deoxynivalenol and fumonisin than silage made from plants that were undamaged. Microbial inoculation resulted in fewer yeasts and lower concentrations of zearalenone in silage when compared to uninoculated silage. Inoculated silage also had more acetic acid and 1,2-propanediol than did uninoculated silage. In experiment 2, ears of corn were undamaged or were slashed with a knife 27 d or 9 d before harvesting for corn silage. Whole plants were harvested at about 36% DM in a 2 × 3 factorial arrangement of treatments. Factors were time of damaging the ears (27 d, 9 d, or no damage) relative to harvest and no additive or 0.1% (fresh weight) potassium sorbate. Damaging plants 9 d prior to harvest did not affect the concentrations of deoxynivalenol, fumonisin, and zearalenone in plants at harvest. However, concentrations of deoxynivalenol and fumonisin were increased in fresh forage that had ears damaged at 27 d when compared to corn plants that were undamaged. Corn plants damaged for 27 d prior to harvest also had a lower concentration of starch than corn damaged for 9 d but was higher in acid detergent fiber than other treatments. The addition of potassium sorbate at harvest had no effect on the concentrations of mycotoxins in the resulting silage, but concentrations of mycotoxins were still greatest in silage made from plants that were damaged the longest prior to harvest (27 d). Silages treated with potassium sorbate had fewer yeasts and molds than silages without the additive. Damaging ears of corn before harvest had no effects on the aerobic stability of silages in both experiments. In contrast, the addition of the inoculant and potassium sorbate improved aerobic stabilities of silages when compared to untreated silages. These studies showed that physical damage to ears of corn prior to harvest can result in the production of mycotoxins in the field. This finding suggests that producers should test corn silage for mycotoxins prior to feeding especially if the forage has been subjected to physical damage prior to ensiling.  相似文献   

8.
The effects of increasing levels of solvent-extracted palm kernel meal (SPKM) and corn distillers dried grains (CDG) in corn silage-based diets on feed intake and milk production were examined in 2 experiments. In Experiment 1, 20 Holstein cows averaging 100 d in milk (DIM) (SD = 61.5) at the start of the experiment were utilized in an 11-wk randomized complete block design with 4 treatments in 5 blocks to study effects of increasing levels of SPKM in the diet. During a 3-wk preliminary period, cows were fed a standard diet. At the end of the preliminary period, cows were blocked by 4% fat-corrected milk yield, parity number (primiparous and multiparous), and DIM, and were assigned randomly to 1 of 4 experimental diets. The total mixed ration (TMR) consisted of (dry matter basis) 40% corn silage, 5% coarsely chopped wheat straw, and 55% concentrate. The increasing dietary levels of SPKM were achieved by replacing protein sources and citrus pulp with SPKM and urea (0, 5, 10, and 15% SPKM and 0.06, 0.22, 0.38, and 0.55% urea for SPKM0, SPKM5, SPKM10, and SPKM15, respectively). In Experiment 2, 18 Holstein cows averaging 93 DIM (SD = 49.1) at the start of the experiment were utilized in an 11-wk randomized complete block design with 3 treatments in 6 blocks to study effects of increasing levels of CDG in the diet. The preliminary period lasted for 2 wk. Assignment of cows to treatments was the same as in Experiment 1. The TMR consisted of (dry matter basis) 40% corn silage, 5% coarsely chopped wheat straw, and 55% concentrate. The increasing dietary levels of CDG were achieved by replacing soybean meal and citrus pulp with CDG and urea (0, 7, and 14% CDG and 0, 0.22, and 0.49% urea for CDG0, CDG7, and CDG14, respectively). There were no significant treatment effects on dry matter intake, milk yield, or milk composition in Experiment 1. Inclusion of SPKM tended to increase protein and lactose contents of milk. The SPKM0 diet promoted body weight loss. There were no treatment effects in Experiment 2, except for milk protein content, which was decreased by CDG. Plasma Lys concentration tended to be affected by SPKM and CDG inclusions. Plasma concentrations of 3-methylhistidine and Leu seemed to be related to body protein degradation/synthesis. The feeding of SPKM up to 15% in the diet decreased feed costs without detrimental effects on productive responses and tended to increase milk protein content. The inclusion of CDG in diets based on corn silage and corn byproducts might decrease milk protein content due to an unbalanced supply of AA, particularly Lys.  相似文献   

9.
Three corn hybrids harvested as whole-plant silage were evaluated in three separate feeding trials with lactating dairy cows. In trial 1, 24 multiparous Holstein cows were used in a replicated 4 x 4 Latin square with 28-d periods. Treatments were conventional (Pioneer 3563) and leafy (Mycogen TMF 106) corn silage hybrids, each planted at low (59,000 plants/ha) and high (79,000 plants/ha) plant populations. There were no milk production differences between treatments. Total-tract digestibility of dietary starch was higher for leafy compared with conventional corn hybrids. In trial 2, 26 multiparous Holstein cows were assigned randomly to diets containing either conventional (48% forage diet) or brown-midrib (60% forage diet) corn silage in a crossover design with 8-wk periods. Milk yield was lower, but milk fat percentage and yield were higher, for the high-forage diet containing brown-midrib corn silage. In trial 3, 24 multiparous Holstein cows were used in a replicated 4 x 4 Latin square with 28-d periods. Treatments were corn silage at two concentrations of neutral detergent fiber (Garst 8751, 39.2% NDF; Cargill 3677, 32.8% NDF) each fed in normal- (53% of dry matter) and high- (61 to 67% of dry matter) forage diets. Milk production was not different between corn hybrids. Increased concentrate supplementation increased DMI and milk production. There were minimal benefits to the feeding of leafy or low-fiber corn silage hybrids. Feeding brown-midrib corn silage in a high-forage diet increased milk fat percentage and yield compared with conventional corn silage fed in a normal-forage diet.  相似文献   

10.
Twelve Holstein heifers (average weight 270 kg) were randomly assigned to one of four diets to evaluate the feeding value of chickpeas. Total mixed diets were composed of (dry matter) 40% concentrate mix, 24.5% chopped alfalfa hay, and 35.5% corn silage. Concentrate mixes contained 0, 25, 50, and 75% chickpeas in place of corn and soybean meal. Diets were fed individually for 80 d. Average daily gains (.98, 1.13, 1.14, and .95 kg) were higher for heifers fed 25 and 50% chickpeas than for those fed 0 and 75% chickpeas. Feed per gain (4.72, 4.05, 3.65, and 4.01 kg/kg) was lower for all diets containing chickpeas. Dry matter intake was lowest for heifers fed 75% chickpeas, and dry matter intake as percent of body weight was similar for all groups. Ruminal ammonia, pH, total volatile fatty acid concentrations, and ratio of acetate to propionate were similar for all diets. Serum urea and rumen parameters displayed no trends between diets. Chickpeas were an acceptable replacement for corn and soybean meal in growing heifer diets.  相似文献   

11.
A leafy corn hybrid was compared to a grain corn hybrid as silage and high moisture grain to evaluate dry matter intake, milk yield, and milk composition. Sixteen multiparous Holstein cows averaging 97 DIM were used in a feeding trial based on 4 x 4 Latin squares with 21-d periods. Each of four diets contained (dry basis) 8% chopped hay, 42% corn silage, 11% high moisture corn grain, 10% whole, fuzzy cottonseed, and 29% protein concentrate. One diet used leafy corn as both high moisture grain and silage. A second diet contained grain corn hybrid (control) as both high moisture grain and silage. A third diet contained leafy corn for high moisture grain and control corn for silage and the fourth diet used control corn for high moisture grain and leafy corn for silage. Cows fed diets containing leafy silage produced more milk and milk protein and ate more DM than cows fed control silage. The corn hybrid used for high moisture grain did not influence milk yield or composition. Dry matter intake was greater for cows fed the diet containing both leafy high moisture grain and leafy silage than for cows fed both control high moisture grain and control silage, but milk yield and composition were not different. When fed as silage, the leafy corn hybrid used in this experiment supported greater DMI as well as higher milk and protein yields when compared to the grain corn hybrid.  相似文献   

12.
Fermentation characteristics of corn forage ensiled in mini-silos   总被引:3,自引:0,他引:3  
To evaluate numerous experimental variables and their interactions involving different corn (Zea mays, L.) silage hybrids, scaled down mini-silos are necessary. Objectives of this study were to evaluate the influence of sample size on pH, NH3, and volatile fatty acid profile of 8 corn silage hybrids, selected to vary in fiber digestibility and ensiled in vacuum-sealed polyethylene bags for 90 d, and to assess the suitability of these mini-silos for detecting differences among corn silage samples. Hybrids were grown at the Cornell Teaching and Research Center located near Harford, NY, and harvested at a dry matter content of about 32% in the fall of 2002. Samples from 3 field replications of each hybrid were chipper-shredder chopped and vacuum-ensiled in bags with sample sizes of 50, 100, 200, 400, and 600 g. Increasing sample size resulted in decreased lactic acid, acetic acid, total acids, and NH3. Most of the difference among sample sizes occurred between the 50- and 100-g sample sizes. Lactic acid:acetic acid ratio (3.1 +/- 0.13) and pH (3.9 +/-0.08) did not vary among sample sizes. There was no detectable butyric acid in the samples. Fermentation characteristics suggested that all samples were well ensiled but that the fermentation profile of the 50-g samples differed the most from other sample sizes. Hybrids did vary in lactic acid, acetic acid, lactic acid:acetic acid, and pH. Differences among hybrids were also noted for dry matter and crude protein. Field-chopped corn hybrids that were ensiled using mini-silos had higher acids than corresponding field-chopped corn hybrids ensiled in Ag-bags, in part due to no effluent escaping from the mini-silos. It is possible to use vacuum-sealed plastic bags to ensile corn, with samples as small as 200 g, and to use these mini-silos to assess differences among corn silage samples. Caution should be used when extrapolating mini-silo data to field-scale ensiling.  相似文献   

13.
We studied the effect of increasing the cutting height of whole-plant corn at the time of harvest from 12.7 (NC) to 45.7 (HC) cm on yield and nutritive value of silage for dairy cows. Three leafy corn silage hybrids were harvested at NC and HC at about 34% dry matter (E) and 41% DM (L) and ensiled in laboratory silos. Increasing the height of cutting lowered yields of harvested DM/ha. In addition, the concentrations of DM and starch were higher but the concentrations of lactic acid, crude protein, neutral detergent fiber (NDF), and acid detergent fiber were lower in HC than in NC. The concentration of acid detergent lignin was also lower in HC, but only in corn harvested at E. In vitro digestion (30 h) of NDF was greater in HC (50.7%) than NC (48.3%). Calculated yield of milk per tonne of forage DM was greater for HC than for NC at E but not at L. In a lactation experiment, increasing the height of cutting of another leafy corn silage hybrid, TMF29400, in general also resulted in similar changes in nutrient composition as just described. When fed to lactating dairy cows, HC corn silage resulted in tendencies for greater NDF digestion in the total tract, higher milk production and improved feed efficiency, but there were no differences in 3.5% fat corrected milk between treatments. Results of this study suggest that increasing the cutting height of whole plant corn at harvest can improve the nutritive value of corn silage for lactating dairy cows.  相似文献   

14.
The effect of corn processing (9 kg of dry matter/d of ground dry shelled or 9 kg of dry matter/d of steam rolled) and supplemental hay (0 or 3.2 kg of dry matter/d of alfalfa hay) on milk yield and composition, rumen environment, and starch utilization by lactating cows grazing grass-legume pasture was studied. Twelve rumen cannulated, multiparous Holstein cows in early lactation (95 d in milk), were assigned to a 4 x 4 Latin square design replicated three times. Treatments were ground shelled corn-based concentrate, ground shelled corn-based concentrate plus alfalfa hay, steam-rolled, corn-based concentrate, or steam-rolled, corn-based concentrate plus alfalfa hay. Supplements were fed in equal proportions twice daily. Cows fed steam-rolled corn tended to have higher percentage of milk protein and lower milk urea nitrogen concentrations than cows fed shelled corn. Milk yield was not affected by corn processing or hay supplementation. Intake of pasture forage but not total dry matter intake was reduced by hay supplementation. Starch plus free glucose digestibility in the total tract was not affected by grain processing; however, starch plus free glucose digestibility tended to increase with hay supplementation. Supplemental hay increased starch plus free glucose digestibility through changes in rumen digestion kinetics. Hay supplementation reduced the liquid rate of passage, and tended to reduce particulate turnover. Rumen degradability of pasture forage organic matter tended to be higher for cows fed supplemental hay. Supplemental hay in these diets had a greater impact on starch utilization than corn processing.  相似文献   

15.
BACKGROUND: The physiological basis for using non‐destructive high‐resolution measurements of plant height through plant height sensing to guide variable‐rate nitrogen (N) applications on corn (Zea mays L.) during early (six‐leaf growth stage, V6) to mid (V12) season is largely unknown. This study was conducted to assess the relationships of plant biomass and leaf N with plant height in early‐ to mid‐season corn under six different N rate treatments. RESULTS: Corn plant biomass was significantly and positively related to plant height under an exponential model when both were measured at V6. This relationship explained 62–78% of the variations in corn biomass production. Leaf N concentration was, in general, significantly and positively related to plant height when both were measured at V6, V8, V10 and V12. This relationship became stronger as the growing season progressed from V6 to V12. The relationship of leaf N with plant height in early‐ to mid‐season corn was affected by initial soil N fertility and abnormal weather conditions. CONCLUSION: The relationship of leaf N concentration with plant height may provide a physiological basis for using plant height sensing to guide variable‐rate N applications on corn. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
The aim of this study was to investigate the effects of inoculating 3 contrasting lactic acid bacteria on the fermentation profile, estimated nutritive value, and aerobic stability of corn ears and stover produced under marginal growing conditions. Ears and stover were separated from whole-crop corn plants obtained from 3 replicate field blocks. Representative subsamples were precision chopped and allocated to 1 of the following treatments: an uninoculated control, Lactobacillus plantarum MTD-1 (LP1), L. plantarum 30114 (LP2), or Lactobacillus buchneri 11A44 (LB). Each bacterial additive was applied at a rate of 1 × 10(6) cfu/g of fresh herbage. Triplicate samples of each treatment were ensiled in laboratory silos at 15°C for 3, 10, 35, or 130 d. No difference was observed between the dry matter recoveries of uninoculated ear or stover silages and silages made with LP1, and the aerobic stability of uninoculated ear and stover silages did not differ from silages made with LB. Stover silages made with LP2 and ensiled for 35 d had a lower proportion of lactic acid in total fermentation products compared with LP1. The aerobic stability and dry matter recovery of ear and stover silages in this study were not improved when made with LB, LP1, or LP2, due to the indigenous highly heterolactic fermentation that prevailed in the uninoculated ear and stover during 130-d ensilage.  相似文献   

17.
The effect of Lactobacillus buchneri, alone or in combination with Lactobacillus plantarum, on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages was studied under laboratory conditions. The inoculants were applied at 1 x 10(6) cfu/g. Silages with no additives served as control. After treatment, the chopped forages were ensiled in 1.5-L anaerobic jars. Three jars per treatment were sampled on d 2, 4, 8, 15, and 90. After 90 d of storage, the silages were subjected to an aerobic stability test lasting 5 d, in which CO2 production, as well as chemical and microbiological parameters, was measured to determine the extent of aerobic deterioration. At the end of the ensiling period (d 90), the L. buchneri- and L. buchneri + L. plantarum-inoculated silages had significantly higher levels of acetic acid than the control and L. plantarum-inoculated silages. Therefore, yeast activity was impaired in the L. buchneri- and L. buchneri + L. plantarum-inoculated silages. As a result, L. buchneri, alone or in combination with L. plantarum, improved aerobic stability of the low dry matter corn and sorghum silages. The combination of L. buchneri and L. plantarum reduced ammonia N concentrations and fermentation losses in the silages compared with L. buchneri alone. However, L. buchneri, L. plantarum, and a combination of L. buchneri + L. plantarum did not effect in situ rumen dry matter, organic matters, or neutral detergent fiber degradability of the silages. The L. buchneri was very effective in protecting the low dry matter corn and sorghum silages exposed to air under laboratory conditions. The use of L. buchneri, alone or in combination with L. plantarum, as a silage inoculant can improve the aerobic stability of low dry matter corn and sorghum silages by inhibition of yeast activity.  相似文献   

18.
The effects of replacing chopped alfalfa hay with alfalfa silage in a fine barley grain and alfalfa-based total mixed ration (TMR) were evaluated. Diets contained (dry matter basis) 53.0% commercial energy supplement, 10.3% commercial protein supplement, and 9.7% corn silage. Diets varied in inclusion of chopped alfalfa hay and alfalfa silage, and contained either 20.0% chopped alfalfa hay and 7.0% alfalfa silage, 10.0% chopped alfalfa hay and 17.0% alfalfa silage, or 27.0% alfalfa silage. Contents of crude protein, neutral detergent fiber (NDF), acid detergent fiber, and minerals did not differ among diets. Replacing chopped alfalfa hay with alfalfa silage decreased dietary dry matter, and increased dietary soluble protein and physical effective NDF calculated as the proportion of dietary NDF retained by the 8- and 19-mm screens of the Penn State Particle Separator (peNDF(NDF)) from 13.3 to 15.6% DM. Replacing chopped alfalfa hay with alfalfa silage did not affect dry matter intake, rumen pH, rumen volatile fatty acids, blood lactate, milk fat, and milk protein percentage, but did decrease blood glucose, tended to increase blood urea, and numerically decreased milk yield and milk protein yield. A wider range in peNDF(NDF) and a higher inclusion of corn silage might have resulted in greater differences in rumen fermentation and milk production among diets. The pH of rumen fluid samples collected 4 h after feeding varied from 5.90 to 5.98, and milk fat percentage varied from 2.50 to 2.60% among diets. These values suggest that mild subacute ruminal acidosis was induced by all diets.  相似文献   

19.
Eight multiparous and 8 primiparous Holstein cows were used in a replicated 4 × 4 Latin square design with 4-wk periods to determine the effects on dairy cow performance of feeding corn germ (CG) compared with dried distillers grains with solubles (DDGS) or corn oil (CO). Four isolipidic dietary treatments were formulated: a control diet, a 14% corn germ diet (CGD), a 30% dry distillers grains with solubles diet (DGD), and a 2.5% corn oil diet (COD). All diets were formulated to contain 6.0% fat, with the fat in the control diet provided by a ruminally inert fat source. Dry matter intake was decreased by feeding the COD compared with the CGD; however, no difference in dry matter intake was observed among the control diet, the DGD, and the COD. Dietary treatments had no effect on milk yield, energy-corrected milk, or 4% fat-corrected milk. Feeding CG had no effect on milk fat percentage when compared with the control diet; however, milk fat percentage tended to decrease with DDGS and decreased with CO when compared with the CGD. Milk protein percentage decreased when cows were fed the COD compared with the control diet. Feeding CO tended to decrease milk fat yield compared with CG; however, dietary treatments had no effect on milk protein and lactose yield. Feed efficiency was not affected by dietary treatments and averaged 1.55 kg of energy-corrected milk/kg of dry matter intake. Feeding DDGS and CO increased the concentration of vaccenic and conjugated linoleic acid in milk fat. Concentrations of monounsaturated and polyunsaturated fatty acids in milk were increased in response to feeding the 3 corn coproducts. Fat from CG appears to be relatively protected in the rumen when compared with that from DDGS and CO and therefore will not affect the production of milk fat to the degree of the more available fat in DDGS and CO.  相似文献   

20.
BACKGROUND: The diurnal variation of nitrate and sugars in leafy green vegetables may vary with plant size or the ability of plants to buffer the uptake, synthesis, and use of metabolites. Bibb lettuce was grown in hydroponics in a greenhouse and sampled at 3 h intervals throughout one day in August 2007 and another day in November 2008 to determine fresh weight, dry matter, and concentration of nitrate and sugars. Plantings differing in size and age were sampled on each date. RESULTS: The dry/fresh weight ratio increased during the daylight period. This increase was greater for small compared to large plants. On a fresh weight basis, tissue nitrate of small plants was only half that of larger plants. The variation in concentration with time was much less for nitrate than for soluble sugars. Soluble sugars were similar for all plant sizes early in the day, but they increased far more for small compared to large plants in the long days of summer. CONCLUSION: The greatest yield on a fresh weight basis was obtained by harvesting lettuce at dawn. Although dry matter or sugar content increased later in the day, there is no commercial benefit to delaying harvest as consumers do not buy lettuce for these attributes. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号