首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of dairy science》2022,105(9):7550-7563
The cumulative improvement achieved in the genetic merit for reproductive performance in dairy populations will likely improve dairy cow longevity; therefore, it is time to reassess whether linear type traits are still suitable predictors of survival in an aging dairy cow population. The objective of the present study was therefore to estimate the genetic correlations between linear type traits and survival from one parity to the next and, in doing so, evaluate if those genetic correlations change with advancing parity. After edits, 152,894 lactation survival records (first to ninth parity) were available from 52,447 Holstein-Friesian cows, along with linear type trait records from 52,121 Holstein-Friesian cows. A series of bivariate random regression models were used to estimate the genetic covariances between survival in different parities and each linear type trait. Heritability estimates for survival per parity ranged from 0.02 (SE = 0.004; first parity) to 0.05 (SE = 0.01; ninth parity). Pairwise genetic correlations between survival among different parities varied from 0.42 (first and ninth parity) to 1.00 (eighth to ninth parity), with the strength of these genetic correlations being inversely related to the interval between the compared parities. The genetic correlations between survival and the individual linear type traits varied across parities for 9 of the 20 linear type traits examined, but the correlations with only 3 of these linear type traits strengthened as the cows aged; these 3 traits were rear udder height, teat length, and udder depth. Given that linear type traits are frequently scored in first parity and are genetically correlated with survival in older parities, they may be suitable early predictors of survival, especially for later parity cows. Additionally, the direction of the genetic correlations between survival and rear udder height, teat length, and udder depth did not change between parities; hence, selection for survival in older parities using these linear type traits should not hinder genetic improvement for survival in younger parities.  相似文献   

2.
The objective was to study genetic (co)variance components for binary clinical mastitis (CM), test-day protein yield, and udder health indicator traits [test-day somatic cell score (SCS) and type traits of the udder composite] in the course of lactation with random regression models (RRM). The study used a data set from selected 15 large-scale contract herds including 26,651 Holstein cows. Test-day production and CM data were recorded from 2007 to 2012 and comprised parities 1 to 3. A longitudinal CM data structure was generated by assigning CM records to adjacent official test dates. Bivariate threshold-linear RRM were applied to estimate genetic (co)variance components between longitudinal binary CM (0 = healthy; 1 = diseased) and longitudinal Gaussian distributed protein yield and SCS test-day data. Heritabilities for liability to CM (heritability ~0.15 from 0 to 305 d after calving) were slightly higher than for SCS for corresponding days in milk (DIM) in the course of lactation. Daily genetic correlations between CM and SCS were moderate to high (genetic correlation ~0.70), but substantially decreased at the very end of lactation. Genetic correlations between CM at different test days were close to 1 for adjacent test days, but were close to zero for test days far apart. Daily genetic correlations between CM and protein yield were low to moderate. For identical DIM (e.g., DIM 20, 160, and 300), genetic correlations were −0.03, 0.11, and 0.18, respectively, and disproved pronounced genetic antagonisms between udder health and productivity. Correlations between estimated breeding values (EBV) for CM from the RRM and official EBV for linear type traits of the udder composite, including EBV from 74 influential sires (sires with >60 daughters), were −0.31 for front teat placement, −0.01 for rear teat placement, −0.31 for fore udder attachment, −0.32 for udder depth, and −0.08 for teat length. Estimated breeding values for CM from the RRM were compared with EBV from a multiple-trait model and with EBV from a repeatability model. For test days covering an identical time span and on a lactation level, correlations between EBV from RRM, multiple-trait model, and repeatability model were close to 1. Most relevant results suggest the routine application of threshold RRM to binary CM to (1) allow selection of genetically superior sires for distinct stages of lactation and (2) achieve higher selection response in CM compared with selection strategies based on indicator type traits or based on the indicator-trait SCS.  相似文献   

3.
4.
Correlations among linear type traits and somatic cell counts   总被引:1,自引:0,他引:1  
Genetic and phenotypic correlations between linear type traits and SCC were estimated from lactation average SCC from Pennsylvania DHIA and Holstein linear type evaluations from Sire Power, Inc. and Holstein Association using REML. Correlations were estimated between linear type traits and SCC measured in first lactation and between linear type traits measured in first lactation and SCC measured in second or third lactation. Data sets ranged in size from 4294 daughters of 216 sires to 58,235 daughters of 301 sires. Phenotypic and genetic correlations between the linear traits that reflect body and locomotive characteristics and SCC were generally small and unimportant. Phenotypic correlations between udder traits and SCC were variable, but cows with higher udder depth scores (higher udders) had lower SCC. Genetic correlations between udder traits and SCC were also variable. Genetic correlations between SCC and udder depth, SCC and fore udder attachment, and SCC and teat placement were negative (favorable). Genetic correlations between teat length and SCC tended to be positive. Genetic correlations were largest in magnitude between udder depth and SCC and ranged from -.21 to -.64 (weighted mean = -.35). Selection for higher udders and closer teat placement will likely improve resistance to mastitis in dairy cattle.  相似文献   

5.
Genetic parameters were estimated by restricted maximum likelihood with an animal model on first lactation data of 29,284 French Holstein cows for clinical mastitis, lactation somatic cell score, milking ease, production, and nine udder type traits. The heritability was low for clinical mastitis (0.024), moderate for lactation somatic cell score (0.17) and milking ease (0.17), and ranged from 0.17 to 0.30 for type traits. A high (0.72) but lower than unity genetic correlation was found between clinical mastitis and lactation somatic cell score and indicated that both traits were genetically favorably associated. The antagonism with production was stronger for clinical mastitis than for lactation somatic cell score (genetic correlations 0.45 and 0.15, respectively). Udder depth, fore-udder attachment, and udder balance were favorably associated with lactation somatic cell score and clinical mastitis with genetic correlations ranging from -0.29 to -0.46, whereas low correlations were found with teat length. Milking ease was found to be unfavorably correlated with lactation somatic cell score (genetic correlation 0.44) but not with clinical mastitis.  相似文献   

6.
To explore patterns of variation in Holstein conformation data, 19 genetic correlation matrices from the May 2006 Interbull routine international sire genetic evaluation were reparameterized using an approximate factor analysis. For the udder traits teat length and rear teat placement, only 3 and 5 principal components explained 98 and 99% of the total variation, respectively, whereas 9 to 13 were necessary for overall conformation traits. The absolute deviations of the reparameterized genetic correlations from the initial genetic correlations were lower than 0.03 when 98% of the total variation was considered. The countries with the most frequent large contributions (>0.30) to the second eigenvector for the body, mobility, and overall traits were Australia, New Zealand, Switzerland, Estonia, and Poland. For the udder traits no clear pattern was observed.  相似文献   

7.
Breeders are increasingly interested in improving the machine milkability of Sardinian dairy sheep by selection for udder morphology. Nine-point linear scales were developed to appraise teat placement, degree of suspension of the udder, udder depth, and degree of separation of the 2 halves. Repeatabilities within and across lactation were estimated on an experimental flock. Ewes were scored at least 3 times a year from 1999 to 2003. Within-lactation repeatabilities were greater than 0.70 for all linear traits, whereas across-lactation repeatabilities ranged from 0.59 to 0.66. The first linear combination of basic traits, obtained by principal component analysis, was highly correlated with teat placement, degree of suspension of the udder, and udder depth and showed an across-lactation repeatability of 0.76. These results indicate that an accurate evaluation of animals is possible by a single, early lifetime score. Genetic parameters of linear udder traits were estimated using a REML method applied to a sire model. Data were selected from 76,984 scores of Sardinian yearling ewes collected by 31 classifiers from 1999 to 2004. Two models were compared, one fitting the contemporary group effect as fixed and the other as random. Heritabilities of udder traits ranged from 0.19 to 0.31. The model with the random contemporary group effect produced slightly higher heritabilities and higher correlations between the sires’ estimated breeding values and the daughters’ average scores. As a whole, the genetic correlations between udder traits were favorable, indicating that selection for one trait will produce a positive evolution of the overall udder conformation. In particular, the degree of suspension of the udder was highly correlated with udder depth (0.82). Genetic correlations with milk yield were unfavorable but generally low, with the exception of udder depth (−0.48). Genetic trends were estimated using an animal model. Only udder depth showed a negative constant genetic trend. Overall results indicated that genetic improvement of the udder morphology of Sardinian ewes is feasible, with major emphasis on teat placement and degree of udder suspension, traits showing the highest heritabilities and low unfavorable genetic correlations with milk yield.  相似文献   

8.
The objectives of this study were to estimate the genetic and environmental parameters between body condition score (BCS) and 27 conformation and 3 production traits in Swiss Holstein cattle. The dataset consisted of 31,500 first-lactation cows, which were daughters of 545 sires in 1867 herds. Bivariate sire models with relationships among sires were used to estimate parameters. Least squares means for BCS by lactation stage show that cows lose BCS up to 5 mo after calving and gain BCS prior to the next calving. Regression models showed that an increase in age and percentage of Holstein genes results in an increase and decrease in BCS, respectively. Heritability (h2) was 0.24 for BCS score, which indicates good potential for selection. Sire estimated breeding values for BCS ranged from -0.46 to +0.51 units. Heritabilities ranged from 0.08 (heel depth) to 0.46 (rump width) for type traits and 0.23 to 0.29 for yield traits. Genetic correlations of BCS with 8 conformation traits were significant; stature (0.28), heart girth (0.21), strength (0.17), loin (-0.39), body capacity (0.19), dairy character (-0.35), udder quality (-0.42), and teat position rear (-0.33). Milk production and body condition have an unfavorable genetic correlation (-0.12 to -0.17). These results show that selection for good body condition, body conformation, and optimal milk production is possible and their genetic associations reported here will be useful for designing Swiss breeding goals.  相似文献   

9.
The number of dairy cows milked in automatic milking systems (AMS) is steadily increasing in Norway. Capacity and efficiency of AMS are highly dependent on the individual cow's milking efficiency, such as milking speed and occupation time in the milking robot. Cows meet new challenges in herds utilizing AMS. Consequently, new or revised traits may be needed for genetic evaluation of dairy cattle. The AMS records relevant information on an individual cow basis. The aims of this study were to estimate genetic parameters of new automatically recorded milkability and temperament traits. Data from 77 commercial herds with Norwegian Red dairy cattle were analyzed by mixed linear animal models. The final data set contained 1,012,912 daily records from 4,883 cows in first to ninth lactation. For variance component estimation, univariate and bivariate models were used. Daily records of box time (BT), average flow rate (FR), kilograms of milk per minute of box time (MEF), handling time (HT), log-transformed HT, milking frequency, and milking interval were analyzed with repeatability models. Among these traits, FR, BT, and MEF showed the highest heritabilities of 0.48, 0.27, and 0.22, respectively, whereas heritability of log-transformed HT, HT, milking frequency, and milking interval was low (0.02–0.07). Unsuccessful milkings expressed as rejected milkings, incomplete milkings (IM), milkings with kick-offs (KO), and teat not found also showed low heritabilities (0.002–0.06). Due to low frequency, KO, rejected milkings, IM, and teat not found were also analyzed as proportions per lactation, which resulted in slightly higher heritability estimates. Genetic correlations were favorable and intermediate to strong between BT, HT, MEF, and FR with absolute values above 0.50. Intermediate and favorable correlations were found for IM and KO with BT, HT, MEF, and FR. Cow milkability in AMS can be improved by selection for reduced number of unsuccessful milkings, faster FR, increased MEF, and shorter BT and HT. Our results confirm that automatically recorded data on milkability and temperament can be valuable sources of information for routine genetic evaluations and that milking efficiency in AMS can be genetically improved.  相似文献   

10.
Data from 1341 Holstein heifers of 71 sires were used to study heritabilities of and genetic and phenotypic correlations among milk production traits (308-d milk, front and rear half yields), body measurements (heart girth, withers height, body length, and rump length), udder measurements (front teat length and diameter, rear teat length and diameter, teat distance and udder height), and age at first calving. Genetic and phenotypic parameters were estimated by the multitrait restricted maximum likelihood method. Multitrait estimates of heritability ranged from .37 to .47 for first lactation yield traits, from .19 to .51 for body measurements, and from .08 to .41 for udder measurements. Age at first calving averaged 22.3 mo with a heritability estimate of .11. Milk production traits were all positively correlated with body measurements, suggesting that high producing heifers would be taller, larger, and longer than low producing heifers. Multitrait estimates of genetic and phenotypic correlations between udder height and yield traits were all negative, suggesting that high producing heifers tend to have lower udders. Of four body measurements studied, rump length showed the greatest genetic correlations with yield traits. Among six udder measurements, udder height exhibited the highest degree of associations with yield traits. Thus, rump length and udder height merit greater attention for prediction of lactational performance.  相似文献   

11.
Genetic parameters have been estimated in the Black-Face ecotype of the Latxa breed for udder type traits (udder depth and attachment and teat placement and size) at first or later lactations (considered as different traits), as well as for udder type traits, milk yield, and lactational somatic cell score, including all lactations. Genetic correlations between udder type traits at first or later lactations ranged from 0.85 and 0.95 suggesting that they are nearly identical traits. Udder type traits had moderate heritabilities. Milk yield was estimated to have a genetic correlation of 0.43 with udder depth, 0.10 with udder attachment, −0.25 with teat placement, and −0.10 with teat size, which were unfavorable in general. Genetic correlations of lactational somatic cell score were 0.10 with udder depth, −0.27 with udder attachment, −0.01 with teat placement, and 0.29 with teat size. Genetic correlations between lactational somatic cell score and udder type traits show that udders with good shape are less prone to subclinical mastitis.  相似文献   

12.
Heritabilities; genetic and phenotypic correlations for milk, fat, and protein production; and linear type traits were estimated from a sire model including sire relationships using multiple-trait REML. For the milk production traits, 68,109 first parity records were analyzed. Heritabilities ranged from .31 to .37, genetic correlations between the milk production traits ranged from .80 to .92, and phenotypic correlations ranged from .86 to .94. Linear type traits from 12,996 cows on 15 traits were used to estimate heritabilities and genetic and phenotypic correlations between linear type traits. The heritabilities ranged from .53 for stature to .09 for foot angle. Rear udder height and rear udder width had the highest positive genetic correlation (.85), whereas dairy form and udder depth had the highest negative genetic correlation (-.41). When the first parity production records were merged with type records for cows, 9867 records on 18 traits were obtained. Dairy form, rear udder height, and rear udder width had strong to moderate positive genetic correlations with the three production traits. Fore udder attachment and udder depth had moderate negative genetic correlations with the three milk production traits. These results suggest that selection for improvement of milk production will lead to correlated increases in dairy form, rear udder height, rear udder width, and udder depth and to correlated decreases in the strength of fore udder attachment.  相似文献   

13.
《Journal of dairy science》1988,71(10):2744-2752
Linearized type records on 14,525 Holstein cows were analyzed to obtain genetic and environmental parameters. Each record consisted of scores on 15 linear type traits recorded on cows between March 1982 and October 1986. Genetic and environmental (co)variances were estimated by the algorithm of expectation-maximization of REML procedure. The model used included fixed herd-year effects, groups of unknown maternal grandsires, and linear and quadratic regressions for both age at calving and days in lactation as well as random sire and maternal grandsire effects. Heritabilities ranged from .07 for foot angle to .35 for stature. Environmental correlations were in general small: the highest was .55 between rear udder height and rear udder width. High genetic correlations were found among stature, body strength, and body depth and among the various udder traits measured. Genetic correlations among udder traits and the remaining traits were in general small. Genetic correlations among stature, body strength, and body traits with the remaining traits measured were small also, with the exception of correlations with rump width.  相似文献   

14.
The objectives of this study were to estimate heritabilities of, and genetic correlations among, clinical mastitis (CM), subclinical mastitis (SCM), and alternative somatic cell count (SCC) traits in the first 3 lactations of Swedish Holstein cows, and to estimate genetic correlations for the alternative traits across lactations. Data from cows having their first calving between 2002 and 2009 were used. The alternative SCC traits were based on information on CM and monthly test-day (TD) records of SCC traits of 178,613, 116,079, and 64,474 lactations in first, second, or third parity, respectively. Sires had an average of 230, 165, or 124 daughters in the data (parities 1, 2, or 3, respectively). Subclinical mastitis was defined as the number of periods with an SCC >150,000 cell/mL and without a treatment for CM. Average TD SCC between 5 and 150 d was used as a reference trait. The alternative SCC traits analyzed were 1) presence of at least 1 TD SCC between 41,000 and 80,000 cell/mL (TD41-80), 2) at least 1 TD SCC >500,000 cells/mL, 3) standard deviation of log SCC over the lactation, 4) number of infection peaks, and 5) average days diseased per peak. The same variables in different parities were treated as distinct traits. The statistical model considered the effects of herd-year, year, month, age at calving, animal, and residual. Heritability estimates were 0.07 to 0.08 for CM, 0.12 to 0.17 for SCM, and 0.14 for SCC150. For the alternative traits, heritability estimates were 0.12 to 0.17 for standard deviation of log SCC, TD SCC >500,000 cells/mL, and average days diseased per peak, and 0.06 to 0.10 for TD41-80 and number of infection peaks. Genetic correlations between CM with SCM were 0.62 to 0.74, and correlations for these traits with the alternative SCC traits were positive and very high (0.67 to 0.82 for CM, and 0.94 to 0.99 for SCM). Trait TD41-80 was the only alternative trait that showed negative, favorable, genetic correlations with CM (-0.22 to -0.50) and SCM (-0.48 to -0.85) because it is associated with healthy cows. Genetic correlations among the alternative traits in all 3 parities were high (0.93 to 0.99, 0.92 to 0.98, and 0.78 to 0.99, respectively). The only exception was TD41-80, which showed moderate to strong negative correlations with the rest of the traits. Genetic correlations of the same trait across parities were in general positive and very high (0.83 to 0.99). In conclusion, these alternative SCC traits could be used in practical breeding programs aiming to improve udder health in dairy cattle.  相似文献   

15.
Automatic milking systems record an enormous amount of data on milk yield and the cow itself. These type of big data are expected to contain indicators for health and resilience of cows. In this study, the aim was to define and estimate heritabilities for traits related with fluctuations in daily milk yield and to estimate genetic correlations with existing functional traits, such as udder health, fertility, claw health, ketosis, and longevity. We used daily milk yield records from automatic milking systems of 67,025 lactations in the first parity from 498 herds in the Netherlands. We defined 3 traits related to the number of drops in milk yield using Student t-tests based on either a rolling average (drop rolling average) or a regression (drop regression) and the natural logarithm of the within-cow variance of milk yield (LnVar). Average milk yield was added to investigate the relationships between milk yield and these new traits. ASReml was used to estimate heritabilities, breeding values (EBV), and genetic correlations among these new traits and average milk yield. Approximate genetic correlations were calculated using correlations between EBV of the new traits and existing EBV for health and functional traits correcting for nonunity reliabilities using the Calo method. Partial genetic correlations controlling for persistency and average milk yield and relative contributions to reliability were calculated to investigate whether the new traits add new information to predict fertility, health, and longevity. Heritabilities were 0.08 for drop rolling average, 0.06 for drop regression, and 0.10 for LnVar. Approximate genetic correlations between the new traits and the existing health traits differed quite a bit, with the strongest correlations (?0.29 to ?0.52) between LnVar and udder health, ketosis, persistency, and longevity. This study shows that fluctuations in daily milk yield are heritable and that the variance of milk production is best among the 3 fluctuations traits tested to predict udder health, ketosis, and longevity. Using the residual variance of milk production instead of the raw variance is expected to further improve the trait to breed healthy, resilient, and long-lasting dairy cows.  相似文献   

16.
Our aim was to investigate the genetic correlations between CH4 production and body conformation, fertility, and health traits in dairy cows. Data were collected from 10 commercial Holstein herds in Denmark, including 5,758 cows with records for body conformation traits, 7,390 for fertility traits, 7,439 for health traits, and 1,397 with individual CH4 measurements. Methane production was measured during milking in automatic milking systems, using a sniffer approach. Correlations between CH4 and several different traits were estimated. These traits were interval between calving and first insemination, interval between first and last insemination, number of inseminations, udder diseases, other diseases, height, body depth, chest width, dairy character, top line, and body condition score. Bivariate linear models were used to estimate the genetic parameters within and between CH4 and the other traits. In general, the genetic correlations between CH4 and the traits investigated were low. The heritability of CH4 was 0.25, and ranged from 0.02 to 0.07 for fertility and health traits, and from 0.17 to 0.74 for body conformation traits. Further research with a larger data set should be performed to more accurately establish how CH4 relates to fertility, health, and body conformation traits in dairy cattle. This will be useful in the design of future breeding goals that consider the production of CH4.  相似文献   

17.
Age at first insemination, days from calving to first insemination, number of services, first-service nonreturn rate to 56 d, days from first service to conception, calving ease, stillbirth, gestation length, and calf size of Canadian Holstein cows were jointly analyzed in a linear multiple-trait model. Traits covered a wide spectrum of aspects related to reproductive performance of dairy cows. Other frequently used fertility characteristics, like days open or calving intervals, could easily be derived from the analyzed traits. Data included 94,250 records in parities 1 to 6 on 53,158 cows from Ontario and Quebec, born in the years 1997 to 2002. Reproductive characteristics of heifers and cows were treated as different but genetically correlated traits that gave 16 total traits in the analysis. Repeated records for later parities were modeled with permanent environmental effects. Direct and maternal genetic effects were included in linear models for traits related to calving performance. Bayesian methods with Gibbs sampling were used to estimate covariance components of the model and respective genetic parameters. Estimates of heritabilities for fertility traits were low, from 3% for nonreturn rate in heifers to 13% for age at first service. Interval traits had higher heritabilities than binary or categorical traits. Service sire, sire of calf, and artificial insemination technician were important (relative to additive genetic) sources of variation for nonreturn rate and traits related to calving performance. Fertility traits in heifers and older cows were not the same genetically (genetic correlations in general were smaller than 0.9). Genetic correlations (both direct and maternal) among traits indicated that different traits measured different aspects of reproductive performance of a dairy cow. These traits could be used jointly in a fertility index to allow for selection for better fertility of dairy cattle.  相似文献   

18.
Teat cup liner slips, manual milking machine adjustments, milk yields, and milking times were recorded during both morning and evening milkings for 8 d on 97 Holstein cows in The Pennsylvania State University dairy herd. Fore and rear udder heights (distance from floor to udder), udder levelness, distances between teats (before and after milking), teat lengths, teat diameters, and teat end shapes were measured on the same cows. Product-moment correlations among the morphological characteristics, linear slips, manual adjustments, milk yields, and milking times were determined. Residual correlations from a model including lactation number and DIM (linear and quadratic) were also calculated. The variation among cows in machine liner slips and manual adjustments within and across lactation number and DIM can be partially explained by udder and teat morphology. Wider teats were associated with increased linear slips and increased manual adjustments. More tilted udders (rear quarters lower than front quarters) were associated with increased liner slips and tended to be associated with increased manual adjustments. In addition, larger teat diameters and longer teats tended to be associated with increased liner slips.  相似文献   

19.
The objective was to examine the direct and correlated responses of linear type, yield traits, and somatic cell scores (SCS) to divergent selection for predicted transmitting ability for type (PTAT) in Holsteins, while maintaining selection for yield traits across lines. For four generations, one-half of the University of Nebraska research Holstein herd was bred to Holstein sires with PTAT > 1.50 and the other half to sires with PTAT < 1.25, with nearly equal predicted transmitting abilities for yield traits for both groups. Estimates of genetic and residual correlations and heritabilities were obtained from REML estimates of (co)variance components. Model for type traits included fixed effect of date cows were classified, effects of age in days at freshening, and stage of lactation at classification. Year-season when cows freshened was fixed effect in model for yield and SCS. Animal genetic and residual effects were random. Final score, milk, fat, and protein yields, and SCS had heritability estimates of 0.38, 0.13,0.22, 0.09, and 0.38, respectively. Heritability estimates for type traits ranged from 0.04 to 0.52. Estimates of genetic correlations of final score with SCS and milk, fat, and protein yields were -0.64, 0.01, -0.18, and 0.06, respectively. Estimates of genetic correlations among linear type traits ranged from -0.77 to 1.00. Means of estimated breeding values for final score, stature, strength, body depth, fore udder attachment, rear udder height and width, udder cleft, udder depth, and front teat placement were significantly different between lines in the third generation. Milk, fat, and protein yields were not significantly different between lines in third generation, whereas SCS was significantly different. Estimate of genetic correlation between final score and SCS suggest that selection on PTAT would result in a change for SCS. In this study, divergent selection on PTAT of sires had a significant effect on udder and body traits, but little or no effect on feet and leg traits.  相似文献   

20.
The overall goal of this study was to investigate milk flow traits in Italian Holstein-Friesian cows and, in particular, the bimodality of milk flow, defined as delayed milk ejection at the start of milking. Using a milkometer, 2,886 records were collected from 133 herds in northern Italy from 2001 to 2007. All records included 5 time-period measurements for milk flow, somatic cell score (SCS), milk yield, 8 udder type traits, and the presence or absence of bimodality in milk flow. Genetic parameters were estimated using linear animal models for continuous traits such as milk flow, udder type, SCS, and milk production, whereas bimodality was analyzed as a categorical trait. With the exception of decreasing time (which had a very small heritability value of 0.06), heritability values for milk flow traits were moderate, ranging from 0.10 (ascending time) to 0.41 (maximum milk flow). In addition, moderate to high genetic correlations were estimated between total milking time and other time measures (from 0.78 to 0.87), and among time flow traits (from 0.62 to 0.91). The decreasing time was the trait most genetically correlated with udder type traits, with correlation values of 0.92 with rear udder height, 0.85 with rear udder width, and 0.73 with teat placement. Large udders with strong attachments were also associated with greater milk production. Heritability estimated for bimodality was 0.43, and its genetic correlation with milk flow traits and SCS indicated a sizable genetic component underlying this trait. Bimodality was negatively associated with milk production; shorter milking times and greater peak milk levels were genetically correlated with more frequent bimodal flows, indicating that faster milk release would result in an increase in bimodal patterns. The negative genetic correlation of bimodality with SCS (−0.30) and the genetic correlation between milk flow traits and SCS suggest that the relationship between milkability and SCS is probably nonlinear and that intermediate flow rates are optimal with respect to mastitis susceptibility. Quicker milk flow over a shorter period would increase the frequency of bimodal curves in milking, whereas the correlation between bimodality and both ascending and descending time was less clear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号