首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cao  C. Seok  E. O  K.K. 《Electronics letters》2006,42(4):208-210
A 192 GHz cross-coupled push-push voltage controlled oscillator (VCO) is fabricated using the UMC 0.13 /spl mu/m CMOS logic process. The VCO can be tuned from 191.4 to 192.7 GHz. The VCO provides output power of /spl sim/-20 dBm and phase noise of /spl sim/-100 dBc/Hz at 10 MHz offset, while consuming 11 mA from a 1.5 V supply.  相似文献   

2.
Jung  D.Y. Park  C.S. 《Electronics letters》2008,44(10):630-631
A 27 GHz cross-coupled LC voltage controlled oscillator (VCO) using a standard 0.13 mum CMOS technology is presented. The VCO using a high-Q LC resonator with a micro-strip inductor (mu-strip L) provides a phase noise of -113 dBc/Hz at a 1 MHz offset frequency. The figure - of-merit (FoM) is -194.6 dBc/Hz. To obtain high output power, it also uses a common source amplifier as a buffer and it shows the output power of -3.5 dBm at an oscillation frequency of 26.89 GHz. This is believed to be the lowest phase noise and FoM with the highest output power of a millimetre-wave VCO in CMOS technology.  相似文献   

3.
A 5.6 GHz balanced voltage-controlled oscillator (VCO) is designed and implemented in a 0.18 mum CMOS 1P6M process. It consists of two single-ended complementary Colpitts LC-tank VCOs coupled by two pairs of varactors. At the supply voltage of 1.2 V, the output phase noise of the VCO is -119.13 dBc/Hz at 1MHz offset frequency from the carrier frequency of 5.6 GHz, and the figure of merit is -190.29 dBc/Hz. Total VCO core power consumption is 2.4 mW. Tuning range is about 600 MHz, from 5.36 to 5.96 GHz, while the control voltage was tuned from 0 to 1.2 V.  相似文献   

4.
A novel voltage controlled oscillation (VCO) topology using 90-m CMOS technology is demonstrated. The common-source PMOS single transistor integrated with an inductor leads to negative resistance for the VCO that minimizes the transistor size and decreases the flicker noise sources. To our knowledge, the topology of the core VCO is the most compact configuration ever reported. The fabricated VCO consumes 6.26mW with a supply voltage of 1 V and has a 1.68times1.41 mm2 chip area, including the ESD protection circuit. At 1.77 GHz, PMOS VCO features an output power in the range of -5.2 dBm, and exhibits a phase noise of -94 dBc/Hz at the offset frequency of 300 kHz and -107 dBc/Hz at 1MHz  相似文献   

5.
基于65nmCMOS工艺实现了60GHz推—推压控振荡器(VCO)设计。采用互补交叉耦合去尾电流源结构以降低相位噪声。压控振荡器输出包含两级缓冲放大器,第二级缓冲放大器偏置在截止区附近以增大二次谐波的输出功率。在1.2/0.8V电源电压下,压控振荡器核心和缓冲放大器分别消耗2.43mW和2.95mW。在偏离中心频率1MHz处相位噪声为-90.7dBc/Hz。输出功率为-2.92dBm。特别的,压控振荡器的调谐范围达到9.2GHz(15.3%),与调谐范围相关的性能指标FOMT为-182.7dBc/Hz。该压控振荡器可应用于57GHz~64GHz开放频段超高速短距离无线通信。  相似文献   

6.
A 14-GHz 256/257 dual-modulus prescaler is implemented using secondary feedback in the synchronous 4/5 divider on a 0.18-/spl mu/m foundry CMOS process. The dual-modulus scheme utilizes a 4/5 synchronous counter which adopts a traditional MOS current mode logic clocked D flip-flop. The secondary feedback paths limit signal swing to achieve high-speed operation. The maximum operating frequency of the prescaler is 14 GHz at V/sub DD/=1.8 V. Utilizing the prescaler, a 10.4-GHz monolithic phase-locked loop (PLL) is demonstrated. The voltage-controlled oscillator (VCO) operates between 9.7-10.4 GHz. The tuning range of the VCO is 690 MHz. The phase noise of the PLL and VCO at a 3-MHz offset with I/sub vco/=4.9 mA is -117 and -119 dBc/Hz, respectively. At the current consumption of I/sub vco/=8.1 mA, the phase noise is -122 and -122 dBc/Hz, respectively. The PLL output phase noise at a 50-kHz offset is -80 dBc/Hz. The PLL consumes /spl sim/31 mA at V/sub DD/=1.8 V.  相似文献   

7.
袁莉  周玉梅  张锋 《半导体技术》2011,36(6):451-454,473
设计并实现了一种采用电感电容振荡器的电荷泵锁相环,分析了锁相环中鉴频/鉴相器(PFD)、电荷泵(CP)、环路滤波器(LP)、电感电容压控振荡器(VCO)的电路结构和设计考虑。锁相环芯片采用0.13μm MS&RF CMOS工艺制造。测试结果表明,锁相环锁定的频率为5.6~6.9 GHz。在6.25 GHz时,参考杂散为-51.57 dBc;1 MHz频偏处相位噪声为-98.35 dBc/Hz;10 MHz频偏处相位噪声为-120.3 dBc/Hz;在1.2 V/3.3 V电源电压下,锁相环的功耗为51.6 mW。芯片总面积为1.334 mm2。  相似文献   

8.
This paper presents a new low phase noise quadrature voltage-controlled oscillator (QVCO), which consists of two differential complementary Colpitts voltage-controlled oscillators (VCOs) with a tail inductor. The output of the tail inductor in one differential VCO is injected to the bodies of the nMOSFETs in the other differential VCO and vice versa. The proposed CMOS QVCO has been implemented with the TSMC 0.18 mum CMOS technology and the die area is 0.725 times 0.839 mm2. At the supply voltage of 1.1 V, the total power consumption is 9.9 mW. The free-running frequency of the QVCO is tunable from 5.26 GHz to 5.477 GHz as the tuning voltage is varied from 0.0 V to 1.1 V. The measured phase noise at 1 MHz frequency offset is -124.36 dBc/Hz at the oscillation frequency of 5.44 GHz and the figure of merit (FOM) of the proposed QVCO is -189.1 dBc/Hz.  相似文献   

9.
A 2 V 1.8 GHz fully integrated CMOS dual-loop frequency synthesizer is designed in a standard 0.5 /spl mu/m digital CMOS process for wireless communication. The voltage-controlled oscillator (VCO) required for the low-frequency loop is designed using a ring-type VCO and achieves a tuning range of 89% from 356 to 931 MHz and a phase noise of -109.2 dBc/Hz at 600 kHz offset from 856 MHz. With an active chip area of 2000/spl times/1000 /spl mu/m/sup 2/ and at a 2 V supply voltage, the whole synthesizer achieves a tuning range from 1.8492 to 1.8698 GHz in 200 kHz steps with a measured phase noise of -112 dBc/Hz at 600 kHz offset from 1.86 GHz. The measured settling time is 128 /spl mu/s and the total power consumption is 95 mW.  相似文献   

10.
A 1.8 GHz fractional-N frequency synthesizer implemented in 0.6 /spl mu/m CMOS with an on-chip multiphase voltage-controlled oscillator (VCO) exhibits no spurs resulting from phase interpolation. The proposed architecture randomly selects output phases of a multiphase VCO for fractional frequency division to eliminate spurious tones. Measured phase noise at 1.715 GHz is lower than -80 dBc/Hz within a 20 kHz loop bandwidth and -118 dBc/Hz at 1 MHz offset with no fractional spurs above -70 dBc/Hz. The synthesizer has a frequency resolution step smaller than 10 Hz. The chip consumes 52 mW at 3.3 V and occupies 3.7 mm/spl times/2.9 mm.  相似文献   

11.
A 1-V CMOS frequency synthesizer is proposed for wireless local area network 802.11a transceivers using a novel transformer-feedback voltage-controlled oscillator (VCO) for low voltage and a stacked frequency divider for low power. Implemented in a 0.18-mum CMOS process and operated at 1-V supply, the VCO measures a phase noise of -140.5 dBc at an offset of 20 MHz with a center frequency of 4.26 GHz and a power consumption of 5.17 mW. Its tuning range is as wide as 920 MHz (23%). By integrating the VCO into a frequency synthesizer, a phase noise of -140.1 dBc/Hz at an offset of 20 MHz is measured at a center frequency of 4.26 GHz. Its output frequency can be changed from 4.112 to 4.352 GHz by switching the 3-bit modulus of the programmable divider. The synthesizer consumes only 9.7 mW and occupies a chip area of 1.28 mm2.  相似文献   

12.
To reduce phase noise degradation from oscillator tail current sources, this letter presents an inductor-capacitor voltage-controlled oscillator (LC-VCO) biased by triode metal-oxide-semiconductor transistors. The VCO system also includes an amplitude control loop and a voltage regulator to endure process, voltage, and temperature variations and to enhance power supply rejection ratio. Fabricated in a 0.18 mum CMOS process, the measured results show the adopted topology achieves a better phase noise than the conventional saturation current source. At 5.181 GHz, the VCO system demonstrates a phase noise of -104.8 dBc/Hz at 100-kHz offset, and -127.1 dBc/Hz at 1 MHz offset, while dissipating 4.2 mA from a 1.8 V supply voltage. The corresponding figures of merit at 100 kHz and 1 MHz offset are 190.3 and 192.6 dBc/Hz/mW, respectively.  相似文献   

13.
基于中科院微电子所的AlGaN/GaN HEMT工艺研制了一个X波段高功率混合集成压控振荡器(VCO)。电路采用源端调谐的负阻型结构,主谐振腔由开路微带和短路微带并联构成,实现高Q值设计。在偏置条件为VD=20V, VG=-1.9V, ID=150mA时,VCO在中心频率8.15 GHz处输出功率达到28 dBm,效率21%,相位噪声-85 dBc/Hz@100 KHz,-128 dBc/Hz@1 MHz。调谐电压0~5V时,调谐范围50 MHz。分析了器件闪烁噪声对GaN HEMT基振荡器相位噪声性能的主导作用。测试结果显示了AlGaN/GaN HEMT工艺在高功率低噪声微波频率源中的应用前景。  相似文献   

14.
A CMOS quadrature LC-tank voltage-controlled oscillator topology which uses a planar spiral trans-former as coupling elements has been implemented in mixed-signal and RF 1P6M 0.18μm CMOS technology of SMIC. The measured phase noise is -125.7 dBc/Hz at an offset frequency of 1 MHz from the carrier of 4.6 GHz while the VCO core circuit draws only of 10 mW from a 1.8 V supply. The measured phase error is approximately 1.5° based on the time domain outputs and the output power is about -2 dBm. The VCO can cover the frequency range of 4.36-4.68 GHz. The tuning range is 320 MHz (7.0%) and the FOM is -189 dB.  相似文献   

15.
张标  陈岚   《电子器件》2008,31(3):814-816
压控振荡器是锁相环电路的关键的组成部分之一,采用新的电流复用结构,可以明显降低该电路的功耗,而且由于没有尾电流,新结构还能有效改善电路的相位噪声.在TSMC 0.18 CMOS 1P6M工艺下的仿真结果表明:在1.25 V供电电压下振荡器的调节范围是2.26 GHz到2.76 GHz,在频偏1 MHz处的相位噪声为--130 dBc/Hz,平均功耗不超过1.2 mW.  相似文献   

16.
设计了工作在2GHz,差分控制的单片LC压控振荡器,并利用0.18μm CMOS工艺实现.利用模拟和数字(4位二进制开关电容阵列)调频技术,压控振荡器的调频范围达到16.15%(1.8998~2.2335GHz).在2.158GHz工作频率下,在1MHz频偏处的相位噪声为-118.17dBc/Hz.应用给出的开关设计,相位噪声在不同的数字位控制下变化不超过3dB.由于利用pn结二级管作为变容管,在调频范围内,相位噪声仅改变约2dB.压控振荡器在1.8V电源电压下消耗2.1mA电流并能够在1.5V电源电压下正常工作.  相似文献   

17.
A 5-GHz CMOS voltage-controlled oscillator (VCO) integrated with a micromachined switchable differential inductor is reported in a 0.18 mum radio frequency-CMOS-based microelectromechanical system technology. The power consumption of the core is about 8 mW at the supply voltage of 1.8 V. A total tuning range of 470 MHz (from 5.13 GHz to 5.60 GHz) is achieved as the tuning voltage ranging from 0 V to 1.8 V. In the practical tuning range, the measured phase noise performances at 1 MHz offset are less than -125 dBc/Hz and -126 dBc/Hz when the inductor switch is turned on and off, respectively. The figure-of-merit is better than -190 dB. When compared with a contrast VCO circuit that utilizes a standard switchable differential inductor, this oscillator reaches a phase noise improvement of around 3 dB as the switch is turned on. Around 1-dB on-off phase noise difference can be achievable.  相似文献   

18.
A 6 GHz voltage controlled oscillator (VCO) optimized for power and noise performance was designed and characterized. This VCO was designed with the negative-resistance (Neg-R) method, utilizing an InGaP/GaAs hetero-junction bipolar transistor in the negative-resistance block. A proper output matching network and a high Q stripe line resonator were used to enhance output power and depress phase noise. Measured central frequency of the VCO was 6.008 GHz. The tuning range was more than 200 MHz. At the central frequency, an output power of 9.8 dBm and phase noise of -122.33 dBc/Hz at 1 MHz offset were achieved, the calculated RF to DC efficiency was about 14%, and the figure of merit was -179.2 dBc/Hz.  相似文献   

19.
This paper proposes LC voltage‐controlled oscillator (VCO) phase‐locked loop (PLL) and ring‐VCO PLL topologies with low‐phase noise. Differential control loops are used for the PLL locking through a symmetrical transformer‐resonator or bilaterally controlled varactor pair. A differential compensation mechanism suppresses out‐band spurious tones. The prototypes of the proposed PLL are implemented in a CMOS 65‐nm or 45‐nm process. The measured results of the LC‐VCO PLL show operation frequencies of 3.5 GHz to 5.6 GHz, a phase noise of –118 dBc/Hz at a 1 MHz offset, and a spur rejection of 66 dBc, while dissipating 3.2 mA at a 1 V supply. The ring‐VCO PLL shows a phase noise of –95 dBc/Hz at a 1 MHz offset, operation frequencies of 1.2 GHz to 2.04 GHz, and a spur rejection of 59 dBc, while dissipating 5.4 mA at a 1.1 V supply.  相似文献   

20.
This paper presents a 5.7–6.0 GHz Phase-Locked Loop (PLL) design using a 130 nm 2P6M CMOS process. We propose to suppress reference spur through reducing the current mismatch in charge pump (CP), controlling the delay time in phase frequency detector (PFD), and using a smaller VCO gain (KVCO). With a reference frequency of 32.768 MHz, chip measurement results show that the frequency tuning range is 5.7–6.0 GHz, the reference spur is −68 dBc, the phase noise levels are −109 dBc/Hz and −135 dBc/Hz at 1 MHz and 10 MHz offset respectively for 5.835 GHz. Compared with existing designs in the literature, this work’s reference spur is improved by at least 17% and its phase noise is the lowest. Under a 1.5 V supply voltage, the power dissipation with an output buffer of the PLL is 12 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号