首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于图像分块的LDA人脸识别   总被引:1,自引:0,他引:1  
设计了一种基于图像分块的LDA(linear discriminant analysis)人脸识别方法,该方法从模式的原始数字图像出发,先对图像矩阵进行分块,然后对分块子图像进行LDA特征提取,从而得到能代替原始模式的低维新模式,最后再用最小距离分类器进行分类.该方法克服了传统LDA方法的缺点,其优点是能有效地提取图像的局部特征.实验表明:该方法在识别性能上优于Fisheffaces方法.  相似文献   

2.
针对目前综放工作面煤矸图像识别方法存在的参数调节难度高、预测准确率低、易过拟合等问题,提出了一种基于随机森林(RF)算法的综放工作面煤矸图像识别方法。以担水沟煤矿6203综放工作面为工程背景,采集放煤口的煤矸图像并对其进行裁剪、灰度转化、对比度增强、图像滤波预处理;采用灰度-梯度共生矩阵提取出15个煤矸图像纹理特征;采用RF算法对15个煤矸纹理特征的重要性进行排序,并选取前5个实现降维处理,分析降维前后RF算法对煤矸图像的识别效果。结果表明,在决策树个数为150、采用log2^M+1方法计算每次分裂时的特征数情况下,降维后RF模型的煤矸分类准确率为97%,比降维前提高4%,煤矸分类查准率为0.98,查全率为0.96,且袋外错误经50次迭代达到9%,泛化能力更强。  相似文献   

3.
监控场景下的带标签人脸数据难以获取,尽管可以利用已有的公开数据集或合成数据,但这些数据与真实的监控人脸数据在图像风格上存在较大的域间差异。针对该问题,不同于基于特征或公共子空间的域适应方法,提出一种基于图像风格迁移的解决方法。具体地,基于CycleGAN网络改进得到Face-CycleGAN,在保持身份属性的前提下,对现有带标签数据进行风格迁移,使其在背景、光照、皮肤材质等方面与监控场景更接近,并进一步通过联合滤波对迁移图像进行后处理。最后,利用迁移得到的数据优化人脸识别算法,减小域间差异带来的负面影响。提出的方法在公开数据集EK-LFH和自建数据集3DProj-Sur上进行了实验评估,分别取得了21.93%和4.77%的识别率提升,证明了该方法在解决域适应问题上是有效的。  相似文献   

4.
针对人脸识别应用,提出一种基于学习且具有鉴别能力的核图像微分滤波器。首先,区别于现有滤波器的手工设计方法,该滤波器利用训练集动态学习获得,通过在学习过程中融入线性判别分析(LDA)思想,可在增加滤波后图像类内相似度的同时减小类间相似度;其次,在线性滤波分类器的基础上进一步引入二阶微分信息,并结合核方法在高维空间下进行滤波器学习,使得图像中的细节和非线性信息可以得到更好的利用并获得更具鉴别力的特征描述。AR和ORL人脸库上的多组对比实验结果表明,与线性可学习图像滤波器IFL、不考虑微分信息的核图像滤波器以及只考虑一阶微分信息的核图像滤波器进行比较,所提算法可有效提高识别性能。  相似文献   

5.
针对仿射传播(AP)算法存在缺乏判定最优聚类结果的指标以及收敛性能不够好等问题,提出了一种基于方向梯度直方图(HOG)的AP改进算法。首先提取图像的HOG特征向量,然后引入收缩因子加速仿射传播算法的收敛过程,最后将有效性指标嵌入算法的迭代过程,监督并引导算法向着最好聚类质量的方向运行。对人脸图像进行实验,实验结果表明,基于HOG的AP改进算法可以得到更接近正确类数的结果,提高了FM值,降低了错误率。  相似文献   

6.
在热红外人脸识别中,眼镜作为人脸图像中常见的遮挡物,造成了人脸眼睛区域信息的丢失,严重影响了人脸识别效果。针对该问题,提出了一种在热红外图像中去除眼镜的算法,对热红外图像进行眼镜检测,使用无眼镜的热红外图像的平均眼睛模板来代替有眼镜的热红外图像的眼镜区域,再基于核主成分分析算法利用可视化图像和热红外图像融合的方法,进行图像融合,获得较好的无眼镜热红外图像,通过分类识别来实现人脸识别。实验结果表明,在热红外人脸识别中,该方法在戴眼镜的情况下能够提高人脸识别的准确率和取得较好的识别效果。  相似文献   

7.
红外图像人脸识别方法研究进展   总被引:1,自引:0,他引:1  
介绍了红外图像人脸识别应用前景和困难所在,阐述了红外图像人脸识别的特征,报告了红外图像人脸识别近年来的研究进展,综述了红外图像人脸识别的方法和技术,介绍了基于红外频谱的人脸和伪装检测方法、基于热红外成像的人脸识别方法、基于支撑向量机的红外图像人脸识别方法,基于线性辨别分析的红外图像人脸识别新方法,并进行了简单的分析和比较.最后探讨了红外图像人脸识别领域的发展与研究方向.  相似文献   

8.
介绍一种以智能卡起动的神经网络型人脸识别身份鉴定装置,通过整合电子式的智能卡技术和生物特征式的人脸识别技术与多项图像处理算法来进行身份鉴定,使得高达85%的准确辨识能于2s内完成。  相似文献   

9.
人脸识别是当前人工智能和模式识别的研究热点,得到了广泛的关注。基 于对不同色彩空间数据的分析,论文提出了多彩色空间典型相关分析的人脸识别方法。文中 对2 维的Contourlet 变换特性进行了分析和讨论,利用Contourlet 的多尺度,方向性和各向 异性等特点,提出了一种基于Contourlet 变换的彩色人脸识别算法。算法对原图进行 Contourlet 分解,对分解得到的低频和高频图像进行cca 分析。典型相关分析是一种有效的 分析方法,其实际应用十分广泛。低频系数反映图像的轮廓信息,高频系数反映图像的细节 信息,使用cca 充分利用不同频率的信息,使不同色彩空间的不同分辨率图形的相关性达到 最大,得到投影系数,最后,采用决策级最近邻分类器完成人脸识别。在对彩色人脸数据库 AR 的识别实验中,该算法识别率达到98%以上,与传统算法相比,该算法不仅既有良好的 识别结果,而且具有很快的运算速度。  相似文献   

10.
陈云平 《计算机时代》2012,(5):37-38,40
利用数字图像模式识别技术实现了人脸的自动检测及特征定位.对数字图像处理中的颜色模型、肤色建模的原理及在人脸识别中的应用进行了概述,分析了人脸识别过程中存在的困难,展望了人脸识别技术的发展方向.  相似文献   

11.
主成分分析与线性判别分析是人脸识别的重要识别方法,它们都通过求解特征值问题实现特征提取,但由于维数灾难会导致小样本和奇异性问题。提出了一种简单的人脸识别方法,无需进行奇异值分解,能有效地降低计算代价。首先将图像划分成块,然后计算多项式系数,得到友阵用于特征提取。基于两张不同图像的多项式系数友阵来计算对称阵。最后通过计算对称阵的零空间的零化度识别相似的人脸图像。为验证提出方法的有效性,在ORL、Yale和FERET人脸数据库上进行了实验。结果表明,该方法对于有较大姿态与光照变化的人脸识别具有较高的识别性能。  相似文献   

12.
李朝友  孙济洲 《计算机应用》2012,32(7):2049-2052
为提高大规模数据库人脸识别的速度和减少内存占用,提出了基于区域收缩的大规模数据库人脸识别方法。把离散余弦变换(DCT)图像压缩技术推广到人脸特征数据库的压缩,对数据库进行多级压缩,生成几个压缩率逐步降低的子数据库。在这些子数据库上,按压缩比由高到低的顺序,逐级进行粗略的人脸识别,根据上一级的识别结果,逐级缩小识别范围。最后,在一个很小的范围内,在原未压缩的数据库上进行精确识别。实验显示,识别时间仅为传统方法的29.2%,内存占用仅为传统方法的10.2%,硬盘资源消耗比传统方法仅多11%,识别率没有显著降低。  相似文献   

13.
Illumination variation is one of the critical factors affecting face recognition rate. A novel approach for human face illumination compensation is presented in this paper. It constructs the nine-dimension face illumination subspace based on quotient image. In addition, with the aim to improve algorithm efficiency, a half-face illumination image is proposed and the low-dimension training set of the face image under different illumination conditions are obtained by means of PCA and wavelet transform. After processing, two different illumination compensation strategies are given: one is adding light, and the other is removing light. Based on the illumination compensation strategy, we implement the typical illumination sample image synthesis and the standard illumination sample image synthesis on a PCA feature subspace and a wavelet transform subspace, respectively, and the illumination compensation of the gray images and the color images are further realized. Experimental results based on the Yale Face Database B, the Extended Yale Face Database B and the CAS-PEAL Face Database indicate that execution time after compensation is approximately half the time and face recognition rate is improved by 20% compared with that of the original images.  相似文献   

14.
Hough Transform (HT) is recognized as a powerful tool for graphic element extraction from images due to its global vision and robustness in noisy or degraded environment. However, the application of HT has been limited to small-size images for a long time. Besides the well-known heavy computation in the accumulation, the peak detection and the line verification become much more time-consuming for large-size images. Another limitation is that most existing HT-based line recognition methods are not able to detect line thickness, which is essential to large-size images, usually engineering drawings. We believe these limitations arise from that these methods only work on the HT parameter space. This paper therefore proposes a new HT-based line recognition method, which utilizes both the HT parameter space and the image space. The proposed method devises an image-based gradient prediction to accelerate the accumulation, introduces a boundary recorder to eliminate redundant analyses in the line verification, and develops an image-based line verification algorithm to detect line thickness and reduce false detections as well. It also proposes to use pixel removal to avoid overlapping lines instead of rigidly suppressing the N×N neighborhood. We perform experiments on real images with different sizes in terms of speed and detection accuracy. The experimental results demonstrate the significant performance improvement, especially for large-size images.  相似文献   

15.
Color face recognition based on quaternion matrix representation   总被引:2,自引:0,他引:2  
There are several methods to recognize and reconstruct a human face image. The principal component analysis (PCA) is a successful approach because of its effective extraction of the global feature and excellent reconstruction of face image. However, the crucial shortcomings of PCA are its low recognition rate and overfitting of feature extraction which leads to the dependence of training data on training samples. In this paper, a modified two-dimension principal component analysis (2DPCA) and bidirectional principal component analysis (BDPCA) methods based on quaternion matrix are proposed to recognize and reconstruct a color face image. In these methods, the spatial distribution information of color images is used to represent a color face, and the 2DPCA or BDPCA feature of color face image is extracted by reducing the dimensionality in both column and row directions. A method obtaining orthogonal eigenvector set of quaternion matrix is proposed. Numerous experiments show that the present approach based on quaternion matrix can effectively smooth the overfitting issue and substantially enhance the recognition rate.  相似文献   

16.
结合小波变换和图像主元分析的人脸识别   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种基于小波变换和图像主元分析(IMPCA)相结合的人脸识别方法。小波变换具有保留主要信息,去除噪声的作用,对人脸图像进行小波变换,对变换后的近似图像采用IMPCA方法进行识别。IMPCA是一种快速有效的直接通过图像抽取特征的方法,从图像重构的角度分析了实现IMPCA的两种模式,两种模式分别增强了图像的行特征和列特征,将它们的识别结果进行决策融合可以获得更好的识别效果。基于ORL人脸数据库的实验表明,所提出的方法在识别率上优于单独的IMPCA方法。  相似文献   

17.
设计了一个基于苹果公司嵌入式操作系统iOS平台下的人脸识别系统。通过对基于Haar-like特征的AdaBoost人脸检测算法的研究,实现了实时人脸检测。提出了一种改进的基于隐马尔科夫模型的人脸识别方法,此方法采用奇异值压缩抽取人脸图像特征作为观察序列,减少了数据的存储量和计算量,解决了嵌入式系统中由于图像处理数据量大造成的低效。实验结果证明,该系统检测速度快,实时性强,识别率高,可以作为iOS平台上其他类型人脸识别应用软件开发的基础。  相似文献   

18.
针对人脸识别过程中人脸图像质量较低造成的低识别率问题,提出了一种基于卷积神经网络的人脸图像质量评价模型。首先建立一个8层的卷积神经网络模型,提取人脸图像质量的深层语义信息;然后在无约束环境下收集人脸图像,并通过传统的图像处理方法以及人工筛选进行过滤,得到的数据集用以进行模型参数的训练;其次通过在图形处理器(GPU)上加速训练,得到用于拟合人脸图像到类别的映射关系;最后将输入在高质量图像类别的概率作为图像的质量得分,建立人脸图像的质量打分机制。实验结果表明,与VGG-16网络相比,所提模型准确率降低了0.21个百分点,但是参数规模减小了98%,极大地提高了模型运算效率;同时所提模型在人脸模糊、光照、姿态和遮挡方面都具有较强的判别能力。因此,可将该模型应用在实时人脸识别系统中,在不影响系统运行效率的前提下提高系统的准确性。  相似文献   

19.
A novel color image segmentation method using tensor voting based color clustering is proposed. By using tensor voting, the number of dominant colors in a color image can be estimated efficiently. Furthermore, the centroids and structures of the color clusters in the color feature space can be extracted. In this method, the color feature vectors are first encoded by second order, symmetric, non-negative definite tensors. These tensors then communicate with each other by a voting process. The resulting tensors are used to determine the number of clusters, locations of the centroids, and structures of the clusters used for performing color clustering. Our method is based on tensor voting, a non-iterative method, and requires only the voting range as its input parameter. The experimental results show that the proposed method can estimate the dominant colors and generate good segmented images in which those regions having the same color are not split up into small parts and the objects are separated well. Therefore, the proposed method is suitable for many applications, such as dominant colors estimation and multi-color text image segmentation.  相似文献   

20.
结合形状滤波和几何图像的3D人脸识别算法   总被引:2,自引:1,他引:2       下载免费PDF全文
表情变化是3维人脸精确识别面临的主要问题,为此提出一种新的对表情鲁棒的匹配方法。通过形状滤波器将人脸空域形状分成不同频率的3个部分:低频部分对应表情变化;高频部分代表白噪声;包含身份区分度最大的中频信息作为表情不变特征。再利用网格平面参数化,将人脸网格映射到边界为正四边形的平面区域内,经过线性插值采样得到3维形状的2维几何图像。最后通过图像匹配识别人脸。FRGC v2人脸数据库上的实验结果表明,使用形状滤波能显著提高算法的精度和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号