首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Based on experimental data, we have reported a reliable method to scale the cumulative time TF,T(A) that rain attenuation A (dB) is exceeded in a fixed satellite system to the time TM,T(A) that it is exceeded in a satellite system for mobile terminals. Zigzag routes and ring-roads simulated city patterns; straight routes simulated freeways. In all cases, TM,T(A) can be expressed as TM,T(A)=ξTF,T (A) with a probability scaling factor ξ independent of A. The simulations have been made at 19.77 GHz with satellite elevation angle &thetas; of 30.6°, 45°, 60°, 80°, and 90°. For the horizontal structure of rain, we have used a very large number of rain-rate maps of rain storms randomly observed in 1989-1992 by a meteorological radar placed at Spine d'Adda (northern Italy). The vehicle speed was modeled as a log-normal random variable. We found: (a) in zigzag routes, TM,T(A)F,T(A), i.e., ξ<1, with results depending on vehicle speed modeling and starting conditions; (b) in a ring-road, there is no difference between fixed and mobile systems (ξ=1); and (c) in straight freeways, TM,T(A)≪TF,T (A)(ξ≪1); TM,T(A) can change significantly in different straight lines and in opposite directions (anisotropy and asymmetry) for medium-large attenuation. When compared to zigzag routes or ring-roads, the performance in straight freeways is the most optimistic. For &thetas;>30.6° and for the same pattern, ξ is fairly independent of &thetas;. Since the radar rain maps are a reliable estimate of the horizontal structure of rain, the findings, which can be considered frequency-independent, stand as a very good prediction of the results obtainable by experiments  相似文献   

2.
3.
A group code C over a group G is a set of sequences of group elements that itself forms a group under a component-wise group operation. A group code has a well-defined state space Σk at each time k. Each code sequence passes through a well-defined state sequence. The set of all state sequences is also a group code, the state code of C. The state code defines an essentially unique minimal realization of C. The trellis diagram of C is defined by the state code of C and by labels associated with each state transition. The set of all label sequences forms a group code, the label code of C, which is isomorphic to the state code of C. If C is complete and strongly controllable, then a minimal encoder in controller canonical (feedbackfree) form may be constructed from certain sets of shortest possible code sequences, called granules. The size of the state space Σk is equal to the size of the state space of this canonical encoder, which is given by a decomposition of the input groups of C at each time k. If C is time-invariant and ν-controllable, then |Σk|=Π1⩽j⩽v|Fj/F j-1|j, where F0 ⊆···⊆ Fν is a normal series, the input chain of C. A group code C has a well-defined trellis section corresponding to any finite interval, regardless of whether it is complete. For a linear time-invariant convolutional code over a field G, these results reduce to known results; however, they depend only on elementary group properties, not on the multiplicative structure of G. Moreover, time-invariance is not required. These results hold for arbitrary groups, and apply to block codes, lattices, time-varying convolutional codes, trellis codes, geometrically uniform codes and discrete-time linear systems  相似文献   

4.
On the capacity of two-dimensional run-length constrained channels   总被引:2,自引:0,他引:2  
Two-dimensional binary patterns that satisfy one-dimensional (d, k) run-length constraints both horizontally and vertically are considered. For a given d and k, the capacity Cd,k is defined as Cd,k=limm,n→∞log2Nm,n d,k/mn, where Nm,nd,k denotes the number of m×n rectangular patterns that satisfy the two-dimensional (d,k) run-length constraint. Bounds on Cd,k are given and it is proven for every d⩾1 and every k>d that Cd,k=0 if and only if k=d+1. Encoding algorithms are also discussed  相似文献   

5.
The minimum-redundancy prefix code problem is to determine, for a given list W=[ω1,..., ωn] of n positive symbol weights, a list L=[l1,...,ln] of n corresponding integer codeword lengths such that Σi=1 n 2-li⩽1 and Σi=1n ωili is minimized. Let us consider the case where W is already sorted. In this case, the output list L can be represented by a list M=[m1,..., mH], where ml, for l=1,...,H, denotes the multiplicity of the codeword length l in L and H is the length of the greatest codeword. Fortunately, H is proved to be O(min(log(1/p1),n)), where p1 is the smallest symbol probability, given by ω1i=1n ωi. We present the Fast LazyHuff (F-LazyHuff), the Economical LazyHuff (E-LazyHuff), and the Best LazyHuff (B-LazyHuff) algorithms. F-LazyHuff runs in O(n) time but requires O(min(H2, n)) additional space. On the other hand, E-LazyHuff runs in O(n+nlog(n/H)) time, requiring only O(H) additional space. Finally, B-LazyHuff asymptotically overcomes, the previous algorithms, requiring only O(n) time and O(H) additional space. Moreover, our three algorithms have the advantage of not writing over the input buffer during code calculation, a feature that is very useful in some applications  相似文献   

6.
The breakdown time of flash memory oxide/nitride/oxide (ONO) layer tbd under positive constant current stressing has been found to be closely related to the cumulative extent of (over)etch of the tungsten silicide, control polysilicon, and ONO layers, i.e., Σ(ΛOE). An empirical first-order relation between tbd and Σ(ΛOE) has been derived to facilitate the plasma etch recipe optimization. This has led to a four-fold increase in the average tbd across a 200-mm wafer to 208 s. More importantly, the spread in tbd has been tightened to ~5%, which is down from ~54%  相似文献   

7.
This paper looks at the problem of estimating the coefficients of a continuous-time transfer function given samples of its input and output data. We first prove that any nth-order continuous-time transfer function can be written as a fraction of the form Σk=0 nkLk(s)/Σk=0 nkLk(s), where Lk(s) denotes the continuous-time Laguerre basis functions. Based on this model, we derive an asymptotically consistent parameter estimation scheme that consists of the following two steps: (1) filter both the input and output data by Lk(s), and (2) estimate {a¯k, b¯k} and relate them to the coefficients of the transfer function. For practical implementation, we require the discrete-time approximation of Lk(s) since only sampled data is available. We propose a scheme that is based on higher order Pade approximations, and we prove that this scheme produces discrete-time filters that are approximately orthogonal and, consequently, a well-conditioned numerical problem. Some other features of this new algorithm include the possibility to implement it as either an off-line or a quasi-on-line algorithm and the incorporation of constraints on the transfer function coefficients. A simple example is given to illustrate the properties of the proposed algorithm  相似文献   

8.
If pi(i=1,···, N) is the probability of the ith letter of a memoryless source, the length li of the corresponding binary Huffman codeword can be very different from the value -log pi. For a typical letter, however, li≈-logpi. More precisely, Pm -=Σ/sub j∈{i|l<-logpj-m}/pj<2-m and Pm +=Σ/sub j∈{i|li>-logpi+m/}pj<2-c(m-2)+2, where c≈2.27  相似文献   

9.
An exact series representation is presented for integrals whose integrands are products of cosine and spherical wave functions, where the argument of the cosine term can be any integral multiple n of the azimuth angle φ. This series expansion is shown to have the following form: I(n)=e-jkR0/R0 δno-jk Σm=1 C(m,n)(k 2ρρ0)/m! hm(2)(kR0)/(kR0)m . It is demonstrated that in the special cases n=0 and n=1, this series representation corresponds to existing expressions for the cylindrical wire kernel and the uniform current circular loop vector potential, respectively. A new series representation for spherical waves in terms of cylindrical harmonics is then derived using this general series representation. Finally, a closed-form far-field approximation is developed and is shown to reduce to existing expressions for the cylindrical wire kernel and the uniform current loop vector potential as special cases  相似文献   

10.
In this paper, dynamic algorithm transformations (DATs) for designing low-power reconfigurable signal-processing systems are presented. These transformations minimize energy dissipation while maintaining a specified level of mean squared error or signal-to-noise ratio. This is achieved by modeling the nonstationarities in the input as temporal/spatial transitions between states in the input state-space. The reconfigurable hardware fabric is characterized by its configuration state-space. The configurable parameters are taken to be the filter taps, coefficient and data precisions, and supply voltage Vdd. An energy-optimal reconfiguration strategy is derived as a mapping from the input to the configuration state-space. In this strategy, taps are powered down starting with the tap with the smallest value [wk2m(wk)] (where wk and Σm(wk) are, respectively, the adders, redundant-to-binary conversion, tree adders, coefficient and energy dissipation of the kth tap). Optimal values for precision and supply voltage Vdd are subsequently computed from the roundoff error and critical path delay requirements, respectively. The DAT-based adaptive filter is employed as a near-end crosstalk (NEXT) canceller in a 155.52-Mb/s asynchronous transfer mode-local area network transceiver over category-3 wiring. Simulation results indicate that the energy savings range from -2% to 87% as the cable length varies from 110 to 40 m, respectively, with an average saving of 69%. An average saving of 62% is achieved for the case where the supply voltage Vdd is kept fixed  相似文献   

11.
This paper presents a second-order delta-sigma (ΔΣ) modulator fabricated in a 70 GHz (fT), 90 GHz (fmax) AlInAs-GaInAs heterojunction bipolar transistor (HBT) process on InP substrates. The modulator is a continuous time, fully differential circuit operated from ±5 volt supplies and dissipates 1 W. At a sample rate of 3.2 GHz and a signal bandwidth of 50 MHz (OSR=32100 MSPS Nyquist rate) the modulator demonstrates a Spur Free Dynamic Range (SFDR) of 71 dB (12-b dynamic range). The modulator achieves the ideal signal-to-noise ratio (SNR) of 55 dB for a second-order modulator at an oversampling ratio (OSR) of 32. The design of a digital decimation filter for this modulator is complete and the filter is currently in fabrication in the same technology. This work demonstrates the first ΔΣ modulator in III-V technology with ideal performance and provides the foundation for extending the use of ΔΣ modulator analog-to-digital converters (ADC's) to radio frequencies (RF)  相似文献   

12.
The evaluation of the quantization error in two-dimensional (2-D) digital filters involves the computation of the infinite square sum Jm=φΣ ny2 (m, n). A simple method is presented for evaluating J based on partial fraction expansion and using the residue method provided the Z-transform Y(Z1, Z2) of the sequence y(m, n) having quadrant support is a causal bounded input, bounded output (BIBO) stable denominator-separable rational function. The value of J is expressed as a sum of simple integrals which can easily be evaluated. The simple integrals are tabulated for ready reference. The proposed method is suitable for analytical as well as numerical computation and can easily be programmed  相似文献   

13.
刘卫平  吕玉伟  吴丽雄  韦成华  王家伟  韩永超  张爽 《红外与激光工程》2021,50(12):20210137-1-20210137-7
当激光辐照玻璃钢烧蚀碳化至一定程度时,产生的树脂碳产物对微波传输产生衰减作用。针对该现象,开展了数值建模研究,将激光辐照-微波传输衰减效应分解为激光辐照、材料热响应、提取模型表征量、微波传输衰减分析等过程。通过玻璃钢材料的激光耦合特性和表面温度测试,对建立的玻璃钢层合板激光辐照温度场计算模型进行了验证;通过材料体温度分布的时间演进分析,提取了网格单元温度超过阈值温度的持续时间加权和St, Tc、网格单元温度超过阈值温度的持续时间与温度乘积的加权和STt, Tc两个模型表征量,采用单个实验数据标定系数、整体数据点匹配分析方法,对微波传输衰减实验与数值模拟结果进行了分析。分析结果表明,St, Tc比STt, Tc更适于表征玻璃钢烧蚀碳化致微波传输衰减效应,温度阈值为873 ℃时计算结果与实验结果最匹配,其R2为0.9956。这说明,通过计算激光辐照玻璃钢温度响应并提取微波传输衰减效应表征量St, Tc,可实现对玻璃钢激光烧蚀碳化致微波传输衰减效应的模拟和预测。  相似文献   

14.
This paper examines the architecture, design, and test of continuous-time tunable intermediate-frequency (IF) fourth-order bandpass delta-sigma (BP ΔΣ) modulators. Bandpass modulators sampling at high IFs (~100 MHz) allow direct sampling of the RF signal-reducing analog hardware and make it easier to realize completely software programmable receivers. This paper presents circuit design of and test results from continuous-time fourth-order BP ΔΣ modulators fabricated in AlInAs/GaInAs heterojunction bipolar technology with a peak unity current gain cutoff frequency (fT) of 80 GHz and a maximum frequency of oscillation (fMAX) of about 130 GHz. Operating from ±5-V power supplies, a fabricated 180-MHz IF fourth-order ΔΣ modulator sampling at 4 GS/s demonstrates stable behavior and achieves 75.8 dB of signal-to-(noise+distortion)-ratio (SNDR) over a 1-MHz bandwidth. Narrowband performance (~1 MHz) performance of these modulators is limited by thermal/device noise while broadband performance (~60 MHz), is limited by quantization noise. The high sampling frequency (4 GS/s) in this converter is dictated by broadband (60 MHz) performance requirements  相似文献   

15.
A fast evaluation procedure for the integral Im,n,p=1/2πj∯|z|=1Hm,n(z)H m,n(z-1)zp-1dz for arbitrary nonnegative integer-valued m, n, and p, is presented, where Hm,n (z)=Σk=0mbm,kz-k l=0nan,lz-1,a n,0≠0 is the transfer function of an arbitrary digital filter. Evaluation of this integral frequently appears in control, communication, and digital filtering. A notable result is the one-term recursion on p, for arbitrary but fixed nonnegative integers m and n. The computational complexity is analyzed, and two illustrative examples demonstrate some of the advantages of this approach  相似文献   

16.
On ternary complementary sequences   总被引:1,自引:0,他引:1  
A pair of real-valued sequences A=(a1,a2,...,aN) and B=(b1,b 2,...,bN) is called complementary if the sum R(·) of their autocorrelation functions RA(·) and RB(·) satisfies R(τ)=RA(τ)+R B(τ)=Σi=1N$ -τaiai+τj=1 N-τbjbj+τ=0, ∀τ≠0. In this paper we introduce a new family of complementary pairs of sequences over the alphabet α3=+{1,-1,0}. The inclusion of zero in the alphabet, which may correspond to a pause in transmission, leads both to a better understanding of the conventional binary case, where the alphabet is α2={+1,-1}, and to new nontrivial constructions over the ternary alphabet α3. For every length N, we derive restrictions on the location of the zero elements and on the form of the member sequences of the pair. We also derive a bound on the minimum number of zeros necessary for the existence of a complementary pair of length N over α3. The bound is tight, as it is met by some of the proposed constructions, for infinitely many lengths  相似文献   

17.
Let n4(k, d) be the smallest integer n, such that a quaternary linear [n, k, d; 4]-code exists. It is proved that n4 (5, 20)=30, n4(5, 42)⩾59, n4(5, 45)⩾63, n4(5, 64)⩾88, n4(5, 80)=109, n4(5, 140)⩾189, n4(5, 143)⩾193, n4 (5, 168)⩾226, n4(5, 180)⩾242, n4(5, 183)⩾246, n4(5, 187)=251  相似文献   

18.
The Gaussian arbitrarily varying channel with input constraint Γ and state constraint Λ admits input sequences x=(x1,---,Xn) of real numbers with Σxi2nΓ and state sequences s=(S1,---,sn ) of real numbers with Σsi2nΛ; the output sequence x+s+V, where V=(V1,---,Vn) is a sequence of independent and identically distributed Gaussian random variables with mean 0 and variance σ2. It is proved that the capacity of this arbitrarily varying channel for deterministic codes and the average probability of error criterion equals 1/2 log (1+Γ/(Λ+σ2)) if Λ<Γ and is 0 otherwise  相似文献   

19.
This paper presents a novel analytical approach to compute the switching activity in digital circuits at the word level in the presence of glitching and correlation. The proposed approach makes use of signal statistics such as mean, variance, and autocorrelation. It is shown that the switching activity αf at the output node f of any arbitrary circuit in the presence of glitching and correlation is computed as αfi=1S-1α(f i,i+1)=Σi=1S- 1p(fi+1)(1-p(fi))(1-ρ(fi,i+1 )) (1) where ρ(fi,i+1)=ρ(fi,i+1)=(E[fi(Sn)f i+1(Sn)]- p(fi)p(fi+1))/(√(p(f i)-p(fi)2)(p(fi+1)- p(fi+12))) (2). S number of time slots in a cycle; ρ(fi,+1) time-slot autocorrelation coefficient; E[x]=expected value of x; px=probability of the signal x being “one”. The switching activity analysis of a signal at the word level is computed by summing the activities of all the individual bits constituting the signal. It is also shown that if the correlation coefficient of the higher order bits of a normally distributed signal x is ρ(xc), then the bit P0 where the correlation begins and the correlation coefficient is related hy ρ(xc)=erfc{(2(P0-1)-1)/(√2σx )} where erfc(x)=complementary error function; σx=variance of x. The proposed approach can estimate the switching activity in less than a second which is orders of magnitude faster than simulation-based approaches. Simulation results show that the errors using the proposed approach are about 6.1% on an average and that the approach is well suited even for highly correlated speech and music signals  相似文献   

20.
Given p co-prime finite impulse response (FIR) filters hi R(mh), it well known that there exist q iR(mq) such that Σihi*qi=δ. Importantly, this enables signal recovery from its convolutions with p⩾2 co-prime FIR filters by FIR filtering. We show that such qi exist almost surely if and only if mq⩾[(mh-1)/(p-1)], where [x] is the smallest integer greater than or equal to x. The results also provide conditions for full rank of certain key matrices arising in the blind multichannel deconvolution problem  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号