首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atom probe is a very powerful instrument to measure concentrations on a sub nanometric scale [M.K. Miller, G.D.W. Smith, Atom Probe Microanalysis, Principles and Applications to Materials Problems, Materials Research Society, Pittsburgh, 1989]. Atom probe is therefore a unique tool to study and characterise finely decomposed metallic materials. Composition profiles or 3D mapping can be realised by gathering elemental composition measurements. As the detector efficiency is generally not equal to 1, the measured compositions are only estimates of actual values. The variance of the estimates depends on which information is to be estimated. It can be calculated when the detection process is known. These two papers are devoted to give complete analytical derivation and expressions of the variance on composition measurements in several situations encountered when using atom probe. In the first paper, we will concentrate on the analytical derivation of the variance when estimation of compositions obtained from a conventional one dimension (1D) atom probe is considered. In particular, the existing expressions, and the basic hypotheses on which they rely, will be reconsidered, and complete analytical demonstrations established. In the second companion paper, the case of 3D atom probe will be treated, highlighting how the knowledge of the 3D position of detected ions modifies the analytical derivation of the variance of local composition data.  相似文献   

2.
The effect of laser pulse energy on the composition measurement of an Al–Mg–Si–Cu alloy (AA6111) specimen has been investigated over a base temperature range of 20–80 K and a voltage range of 2.5–5 kV. Laser pulse energy must be sufficiently higher to achieve pulse-controlled field evaporation, which is at least 0.9 nJ with a beam spot size of about 5 μm, providing an equivalent voltage pulse fraction, ∼14% at 80 K for the alloy specimen. In contrast to the cluster composition, the measured specimen composition is sensitive to base temperature and laser energy changes. The exchange charge state under the influence of laser pulsing makes the detection of Si better at low base temperature, but detection of Cr and Mn is better at a higher temperature and using higher laser energy. No such effect occurs for detection of Mg and Cu under laser pulsing, although Mg concentration is sensitive to the analysis temperature under voltage pulsing. Mass resolution at full-width half-maximum is sensitive to local taper angle near the apex, but has little effect on composition measurement.  相似文献   

3.
Aberrations in the ion trajectories near the specimen surface are an important factor in the spatial resolution of the atom probe technique. Near the boundary between two phases with dissimilar evaporation fields, ion trajectory overlaps may occur, leading to a biased measurement of composition in the vicinity of this interface. In the case of very small second-phase precipitates, the region affected by trajectory overlaps may extend to the centre of the precipitate prohibiting a direct measurement of composition. A method of quantifying the aberrant matrix contribution and thus estimating the underlying composition is presented. This method is applied to the Fe–Cu-alloy system, where the precipitation of low-nanometre size Cu-rich precipitates is of considerable technical importance in a number of materials applications. It is shown definitively that there is a non-zero underlying level of Fe within precipitates formed upon thermal ageing, which is augmented and masked by trajectory overlaps. The concentration of Fe in the precipitate phase is shown to be a function of ageing temperature. An estimate of the underlying Fe level is made, which is at lower levels than commonly reported by atom probe investigations.  相似文献   

4.
In a companion paper [F. Danoix, G. Grancher, A. Bostel, D. Blavette, Surf. Interface Anal. this issue (previous paper).], the derivation of variances of the estimates of measured composition, and the underlying hypotheses, have been revisited in the the case of conventional one dimensional (1D) atom probes. In this second paper, we will concentrate on the analytical derivation of the variance when the estimate of composition is obtained from a 3D atom probe. As will be discussed, when the position information is available, compositions can be derived either from constant number of atoms, or from constant volume, blocks. The analytical treatment in the first case is identical to the one developed for conventional 1D instruments, and will not be discussed further in this paper. Conversely, in the second case, the analytical treatment is different, as well as the formula of the variance. In particular, it will be shown that the detection efficiency plays an important role in the determination of the variance.  相似文献   

5.
Specimen heating is shown to occur in the laser-pulsed 3-dimensional atom probe (3DAP), even in the case of femtosecond pulse lengths. This can have an impact on the spatial resolution of 3DAP analysis, due to surface diffusion, and peak temperatures must be kept sufficiently low to avoid these effects. Similarly, mass resolution can be limited in the analysis of low thermal conductivity materials, due to the slower cool-down of the specimen after the pulse. In such cases, the use of lower repetition frequencies and specimens with large shank angles is shown to improve mass resolution and reduce the noise and degradation in quantitative accuracy resulting from increases in base temperature.  相似文献   

6.
In conventional scanning electron microscopy (SEM), the lateral resolution is limited by the electron beam diameter impinging on the specimen surface. Near field emission scanning electron microscopy (NFESEM) provides a simple means of overcoming this limit; however, the most suitable field emitter remains to be determined. NFESEM has been used in this work to investigate the W (1 1 0) surface with single-crystal tungsten tips of (3 1 0), (1 1 1), and (1 0 0)-orientations. The topographic images generated from both the electron intensity variations and the field emission current indicate higher resolution capabilities with decreasing tip work function than with polycrystalline tungsten tips. The confinement of the electron beam transcends the resolution limitations of the geometrical models, which are determined by the minimum beam width.  相似文献   

7.
Over a narrow range of composition, electrodeposited Al-Mn alloys transition from a nanocrystalline structure to an amorphous one, passing through an intermediate dual-phase nanocrystal/amorphous structure. Although the structural change is significant, the chemical difference between the phases is subtle. In this study, the solute distribution in these alloys is revealed by developing a method to enhance phase contrast in atom probe tomography (APT). Standard APT data analysis techniques show that Mn distributes uniformly in single phase (nanocrystalline or amorphous) specimens, and despite some slight deviations from randomness, standard methods reveal no convincing evidence of Mn segregation in dual-phase samples either. However, implanted Ga ions deposited during sample preparation by focused ion-beam milling are found to act as chemical markers that preferentially occupy the amorphous phase. This additional information permits more robust identification of the phases and measurement of their compositions. As a result, a weak partitioning tendency of Mn into the amorphous phase (about 2 at%) is discerned in these alloys.  相似文献   

8.
Scanning Kelvin probe force microscopy was applied to the microelectrical characterizations of junctions in solar cell devices. Surface Fermi-level pinning effects on the surface potential measurement were avoided by applying a bias voltage (Vb) to the device and taking the Vb-induced potential and electric field changes. Two characterizations are presented: the first is a direct measurement of Bi-induced junction shift in GaInNAs(Bi) cells; the second is a junction-uniformity measurement in a-Si:H devices. In the first characterization, using Bi as a surfactant during the molecular beam epitaxy growth of GaInNAs(Bi) makes the epitaxial layer smoother. However, the electrical potential measurement exhibits a clear Bi-induced junction shift to the back side of the absorber layer, which results in significant device degradation. In the second characterization, the potential measurement reveals highly non-uniform electric field distributions across the n–i–p junction of a-Si:H devices; the electric field concentrates much more at both n/i and i/p interfaces than in the middle of the i-layer. This non-uniform electric field is due possibly to high defect concentrations at the interfaces. The potential measurements further showed a significant improvement in the electric field uniformity by depositing buffer layers at the interfaces, and this indeed improved the device performance.  相似文献   

9.
In this contribution the homogeneity of mechanically alloyed Fe–Cu powders for two different compositions (Fe-10 and Fe-2.5 at%Cu) has been systematically characterised by atom probe tomography. Since Fe–Cu exhibits the Invar effect, it is among the most attractive systems for technical application. Furthermore, this system is immiscible and characterised by a large positive heat of mixing. In combination with the widespread application and accessibility, this predestines Fe–Cu as a binary model alloy to elaborate the enforced nonequilibrium enhanced solubility for immiscible systems. Depending on the parameters composition and milling time, results on the extension of the solubility limit and on the homogeneity of the alloy are presented, discussed and compared to earlier works. Only for the alloy with lower Cu content and for the prolonged milling time of 50 h, chemical homogeneity of the sample as measured by the atom probe was fully reached on the nano-scale. For all other parameter combinations homogeneity could not be achieved, even for long milling times and for those samples that appear to be homogeneous via X-ray analysis. Moreover, impurities were determined, mostly stemming from the fabrication procedure. The arrangement and homogeneity of the most common impurity, oxygen, was evaluated from atom probe data for different samples.  相似文献   

10.
Bartel TP  Kisielowski C 《Ultramicroscopy》2008,108(11):1420-1426
The distribution of indium in a GaN/InxGa1-xN/AlyGa1-yN quantum well with x+/-Deltax=0.24+/-0.07 is quantitatively investigated by extraction of displacement fields from lattice images. Simulations accurately describe the measured strain relaxation across a wedge-shaped sample for a sample thickness up to 150nm. The proportionality between indium concentration and resulting lattice constant cx is approximated by cx=0.5185+0.111xnm. In general, it is challenging to discriminate the effects of random alloying against clustering. In InxGa1-xN this is particularly true at low indium concentrations x<0.2. For an accurate quantitative analysis, sample preparation and imaging were developed such that radiation damage can be recognized if present. Further, an analysis of detection limits and knowledge of the sample thickness are crucial for obtaining reproducible results. Data averaging is necessary to reach sufficient precision. Consequently, the size of the indium-rich clusters is poorly known if x is small. Beyond the interest in physical properties of InxGa1-xN alloys, the analysis of strain and its relaxation exemplifies how quantitative analysis is possible at an atomic level and is in excellent agreement with theoretical predictions.  相似文献   

11.
Statistical analysis of atom probe data has improved dramatically in the last decade and it is now possible to determine the size, the number density and the composition of individual clusters or precipitates such as those formed in reactor pressure vessel (RPV) steels during irradiation. However, the characterisation of the onset of clustering or co-segregation is more difficult and has traditionally focused on the use of composition frequency distributions (for detecting clustering) and contingency tables (for detecting co-segregation).  相似文献   

12.
Key to the integrity of atom probe microanalysis, the tomographic reconstruction is built atom by atom following a simplistic protocol established for previous generations of instruments. In this paper, after a short review of the main reconstruction protocols, we describe recent improvements originating from the use of exact formulae enabling significant reduction of spatial distortions, especially near the edges of the reconstruction. We also show how predictive values for the reconstruction parameters can be derived from electrostatic simulations, and finally introduce parameters varying throughout the analysis.  相似文献   

13.
3D atom probe analysis of the composition of a Sm(Co0.68 Fe0.20 Cu0.10 Zr0.02)7.5 alloy was conducted by varying the probing temperature from 10.6 to 65 K and pulse fraction from 10% to 20%. It was found that the preferential evaporation of Sm occurred at 65 K, due to the very low evaporation field of Sm, 15.2 V/nm calculated by using the charge exchange model. With decreasing the specimen temperature, preferential evaporation of Sm was alleviated. The optimum analysis conditions which give reasonably good measurement of the composition were: the specimen temperature of 20 K and a pulse fraction 15%. The effects of the specimen temperature and pulse fraction on the measured composition of the alloy are discussed, based on the charge exchange model.  相似文献   

14.
The implementation of fast pulsed laser has significantly improved the performance of the atom probe technique by enabling near-atomic-scale three-dimensional analysis of poorly conducting materials. This has broadened the range of applications for the atom probe, addressing a major limitation of the technique. Despite this, the implications of lasing on the tomographic reconstruction of atom probe data have yet to be fully characterised. Here, we demonstrate how changes in the shape of the specimen surface, induced by laser pulsing, affect the ion trajectories, and hence the projection parameters used to build the three-dimensional map.  相似文献   

15.
This work presents an original method for cluster selection in Atom Probe Tomography designed to be applied to large datasets. It is based on the calculation of the Delaunay tessellation generated by the distribution of atoms of a selected element. It requires a single input parameter from the user. Furthermore, no prior knowledge of the material is needed. The sensitivity of the proposed Delaunay cluster selection is demonstrated by its application on simulated APT datasets. A strong advantage of the proposed methodology is that it is reinforced by the availability of an analytical model for the distribution of Delaunay cells circumspheres, which is used to control the accuracy of the cluster selection procedure. Another advantage of the Delaunay cluster selection is the direct calculation of a sharp envelope for each identified cluster or precipitate, which leads to the more appropriate morphology of the objects as they are reconstructed in the APT dataset.  相似文献   

16.
The statistical 1NN method is an elegant way to derive the composition of small B‐enriched clusters in a random AB solid solution from 3D atomic fields. An extension of this method is proposed that includes the contribution of interface region and provides an estimate of the core composition of clusters. This model is applied to boron‐implanted silicon containing boron‐enriched clusters. A comparison with the previous model is performed. This new approach gives relevant information, i.e. the core composition of clusters and the cluster–matrix interface width.  相似文献   

17.
Hudson D  Smith GD  Gault B 《Ultramicroscopy》2011,111(6):480-486
Atom probe tomography uses time-of-flight mass spectrometry to identify the chemical nature of atoms from their mass-to-charge-state ratios. Within a mass spectrum, ranges are defined so as to attribute a chemical identity to each peak. The accuracy of atom probe microanalysis relies on the definition of these ranges. Here we propose and compare several automated ranging techniques, tested against simulated mass spectra. The performance of these metrics compare favourably with a trial of users asked to manually range a simplified simulated dataset. The optimised automated ranging procedure was then used to precisely evaluate the very low iron concentration (0.003-0.018 at%) in a zirconium alloy to reveal its behaviour in the matrix during corrosion; oxygen is injected into solution and has the effect of increasing the local iron concentration near the oxide-metal interface, which in turn affects the corrosion properties of the metal substrate.  相似文献   

18.
A novel technique for the quantification of the iron content of copper precipitates in ferritic steels is presented. Energy-filtered (EF) imaging has been used to extract elemental maps with high spatial resolution. These maps contain enough information to attempt the quantification of the signal produced by the precipitates when either a line profile is measured across them or the whole image signal is integrated. Assumptions such as sphericity of the precipitates and composition variations are discussed. Special attention to the assessment of drift on the information extracted from EF images has been taken. Minimum detectability and optimum acquisition conditions are discussed.  相似文献   

19.
The accuracy and precision of thin-film interfacial mixing as measured with atom probe tomography (APT) are assessed by considering experimental and simulated field-evaporation of a Co/Cu/Co multilayer structure. Reconstructions were performed using constant shank angle and Z-scale reordering algorithms. Reconstruction of simulated data (zero intermixing) results in a 10-90% intermixing width of ∼0.2 nm while experiential intermixing (measured from multiple runs) was 0.47±0.19 and 0.49±0.10 nm for Co-on-Cu and Cu-on-Co interfaces, respectively. The experimental data were collected in analysis orientations both parallel and anti-parallel to film growth direction and the impact of this on the interfacial mixing measurements is discussed. It is proposed that the resolution of such APT measurements is limited by the combination of specimen shape and reconstruction algorithms rather than by an inherent instrumentation limit.  相似文献   

20.
The medium carbon (0.5 wt% C) steels containing various boron contents were studied to observe the distribution of boron using atom probe tomography and electron energy loss spectroscopy. APT revealed the segregation of boron atoms at retained austenite for 100 ppm boron added steels and the trapped carbon atoms at micro-twins for 50 ppm boron treated steels. Moreover, it was also found that boron was randomly distributed for 20 ppm boron added steels regardless of the interactions between carbon and boron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号