首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
P2O5掺杂对高磁导率MnZn铁氧体性能的影响   总被引:6,自引:0,他引:6  
为获得高磁导率MnZn铁氧体材料,研究了P2O5掺杂对MnZn铁氧体微观结构及电磁性能的影响.少量掺杂可使铁氧体晶粒尺寸增大,均匀性改善,起始磁导率提高.但若掺杂过量,晶粒中气孔率增加,起始磁导率下降,损耗也大为增加.在配方为(Zn0.454Mn0.493Fe2 0.053 )Fe23 O4的材料中,当P2O5掺杂量为0.10wt%时,起始磁导率可达10345.  相似文献   

2.
采用传统氧化物陶瓷工艺制备MnZn铁氧体材料。为获得高性能的MnZn软磁铁氧体材料,研究工艺条件及CaO、Nb2O5、Co2O3、TiO2等掺杂对MnZn软磁铁氧体材料增量磁导率的影响。结果表明,适量的CaO掺杂可使铁氧体晶粒尺寸细化,改善铁氧体晶粒的均匀性;适量的Co2O3添加可以改善材料增量磁导率的温度特性;添加适量Nb2O5与TiO2有利于提高起始磁导率、电阻率,降低磁损耗,从而改善材料的直流叠加特性。通过优化掺杂工艺,制备出了高磁导率、宽温、高直流叠加MnZn软磁铁氧体材料。  相似文献   

3.
在钟罩式气氛烧结炉中烧结高导MnZn铁氧体材料.研究发现,掺入适量的CaCO3和Bi2O3能改善材料的磁性能.烧结过程中烧结温度的增高可以促进晶粒长大,有利于提高起始磁导率;烧结气氛对离子电价和晶相形成有着决定性影响,选择合适烧结工艺是制备优质MnZn铁氧体的关键.  相似文献   

4.
采用氧化物陶瓷工艺制备了高频MnZn功率铁氧体,基于动态磁化理论和损耗分离方法,研究了烧结氧分压对材料显微结构、磁导率和损耗的温度特性的影响。结果表明,随着氧分压的增大,室温下MnZn功率铁氧体的密度d、平均晶粒尺寸D、电阻率ρ和起始磁导率μi逐渐减小,而磁滞损耗Ph和涡流损耗Pe逐渐增大,同时μi-T曲线的二峰位置和Ph-T曲线的最小值所对应的温度逐渐移向高温。相同氧分压烧结MnZn功率铁氧体的涡流损耗Pe和剩余损耗Pr均随温度升高而增大。在氧分压为2%时,高频MnZn功率铁氧体具有最优性能,室温下起始磁导率μi为1175,1 MHz/50 mT时20℃与100℃的损耗PL分别为359 kW/m~3和486 kW/m~3,3MHz/10mT时20℃与100℃的损耗分别为221 kW/m~3和301 kW/m~3。  相似文献   

5.
采用扫描电子显微镜和X射线能谱仪对掺杂MnZn功率铁氧体断面进行了分析和表征.对比研究了各掺杂剂在微结构中的分布情况,并探论其在微结构形成过程中的作用及对电磁性能的影响.结果表明,掺杂剂在显微结构中的存在形式可分为四类:(1)掺杂剂进入晶格.其阳离子半径和电负性与Mn、Zn、Fe的离子半径相当,发生阳离子置换,如TiO2、CeO2等;(2)富集于晶界.掺杂剂阳离子半径较大,常偏析于晶界处,如CaO、Bi2O3等;(3)一部分进入晶格,一部分滞于晶界.如SnO2、V2O5、MoO3等;(4)掺杂剂与气孔伴生存在,偏聚于晶粒内部较浅的缩孔中,如Nb2O5、P2O5等.  相似文献   

6.
采用氧化物陶瓷工艺制备高磁导率MnZn铁氧体材料,研究了CaO和MoO3添加对材料磁性能的影响。添加CaO可以形成高阻晶界层,增大材料电阻率,明显增大材料的中频阻抗。添加MoO3能促进晶粒长大,提高起始磁导率,但磁导率频率特性变差。当复合添加0.04wt%CaO和0.07wt%MoO3时,材料具有较好的综合性能:μi=11495,μ200kHz/μ10kHz=98%,T25×15×8的环状磁心在50mV、500kHz测试条件下,阻抗Z=2255。  相似文献   

7.
采用氧化物陶瓷工艺制备Mn Zn铁氧体,研究了Ba O掺杂量对高频Mn Zn功率铁氧体微观结构和磁性能的影响。结果表明,少量的Ba O掺杂可以使铁氧体烧结样品的晶粒尺寸增大,密度和饱和磁感应强度提高,功耗降低,而过量加入后会出现过烧现象,功耗增加,饱和磁通密度和密度有所下降。烧结样品的起始磁导率随Ba O掺杂量的增加单调下降。在1260℃烧结温度下,当Ba O掺杂量为0.025wt%时,样品具有最低功耗值,且其他磁性能也较好。另外,与不掺杂Ba O的最佳烧结条件下铁氧体样品相比,1260℃烧结掺杂量为0.025wt%的材料起始磁导率降低,但功耗的温度特性更优。  相似文献   

8.
采用传统的氧化物湿法工艺制备CuO掺杂的高磁导率MnZn软磁铁氧体。研究了CuO掺杂对材料烧结特性、微观结构及电磁性能的影响。结果表明,适量的CuO掺杂在确保材料起始磁导率的条件下,有效降低烧结温度,改善温升曲线,提高截止频率,提高阻抗特性。1325℃烧结、掺杂0.1wt%CuO的Mn0.48Zn0.47Fe2.05O4材料具有较好的综合性能:μi=10860,TC=125℃,fr=250kHz,样环T25×15×10磁芯线圈的阻抗Z=1420?。  相似文献   

9.
采用传统的氧化陶瓷法,以Fe_2O_3、ZnO、MnO_2为原料按照摩尔分数比52.5︰12︰35.5进行配料,在纯N2或4%氧分压烧结气氛中制备了分别掺杂Y~(3+)、La~(3+)、Ce~(3+)、Sm~(3+)、Gd~(3+)、Yb~(3+)的MnZn铁氧体。通过XRD、SEM、软磁交流测量装置等测试研究了样品的组织结构与磁性能。结果表明,在4%氧分压烧结气氛中制备的材料磁性能更好;掺入适量稀土能细化晶粒、优化显微结构,从而提高材料的磁性能。用于掺杂的几种稀土氧化物中,Ce_2O_3掺杂效果最好。掺杂0.03 wt%Ce_2O_3的烧结样品振幅磁导率由未掺杂时的2014提升至2756,增幅约为37%,矫顽力及功耗(测试条件:100 mT,100 kHz)分别由未掺杂时的21.03 A/m、597.5 kW/m~3降低至12.13 A/m、342.9kW/m~3,下降约43%。  相似文献   

10.
采用传统氧化物法制备了MnZn功率铁氧体,研究了CoO掺杂对MnZn功率铁氧体微观结构和磁性能的影响.结果表明,CoO掺杂导致密度增大,功耗降低,并改善其起始磁导率μi的温度特性.当CoO含量为0.3wt%时,试样晶粒尺寸大小均匀,结构致密,具有良好的综合性能:密度D=4.91g/cm3,起始磁导率μi=2768,饱和磁通密度Bs=519mT,剩磁Br=69mT,矫顽力Hc=9.2A/m,功率损耗Pcv<440kW/m3(15 ~ 120℃),起始磁导率的温度因数αF=4.8×10-7/℃(20~80℃).  相似文献   

11.
研究了添加MoO3对NiCuZn铁氧体起始磁导率及其它某些材料性能的影响.结果表明,添加MoO3在促进晶粒生长的同时,也导致了材料中气孔率的增加,而这反过来又阻碍晶粒的生长.因此材料起始磁导率和晶粒尺寸随MoO3添加量的增加呈先上升后下降的趋势.通过延长保温时间,可有效降低材料中的气孔率,从而获得具有更高起始磁导率的NiCuZn材料,最高起始磁导率可达2930.  相似文献   

12.
研究了莫来石承烧材料与底层磁芯之间的相互作用及其对MnZn铁氧体磁芯性能的影响。结果表明,受承烧材料影响,底层磁芯性能下降,其主要原因是Zn挥发引起的成分偏离。成分分析证实磁芯接触端面有Si4 渗透产生的侵蚀层(厚度约100μm);物相分析证实Al2O3与ZnO反应生成ZnAl2O4异相物质是Zn挥发的主要途径,两者同时作用导致材料性能严重恶化。  相似文献   

13.
Bi2O3-MoO3复合掺杂对NiCuZn铁氧体烧结特性和磁性能的影响   总被引:4,自引:0,他引:4  
研究了采用Bi2O3-MoO3复合掺杂的方式来降低NiCuZn铁氧体的烧结温度及提高电磁性能.结果表明:适量的Bi2O3-MoO3复合掺杂,可在900℃烧结,起始磁导率μi>800,适用于高感量、小尺寸片式感性器件的制备.  相似文献   

14.
采用传统陶瓷工艺及通过调整主配方,成功研制出了二峰温度从25℃至140℃的一系列超高饱和磁通密度Mn-Zn铁氧体材料。结果显示,因为锰锌铁氧体材料的饱和磁通密度Bs取决于主配方以及致密度,超富铁主配方是获得超高Bs锰锌铁氧体材料的必要条件;在超富铁主配方中,增加Fe2O3含量或Zn O含量都会使二峰温度升高,与常规配方是完全相反的变化规律;二峰温度越高,最低损耗值越高、高温Bs越高、起始磁导率越低、相对密度越低。  相似文献   

15.
在BMS-4永磁铁氧体预烧料的基础上添加CaCO3、 SiO2和稀土氧化物,获得了综合磁性能较高的铁氧体永磁产品.在同等质量条件下,添加剂的粒度愈小,材料的磁性能愈高.稀土氧化物的加入,有利于提高磁体的Br.  相似文献   

16.
MnZn铁氧体在电子工业上有着非常广泛的应用。MnZn铁氧体与银电极的低温共烧是实现其无源集成组件的关键。本文分析了影响MnZn铁氧体低温烧结的各种因素,重点介绍了目前国内外在MnZn铁氧体低温共烧领域中所取得的相关成果,最后提出其未来发展的方向。  相似文献   

17.
V2O5含量对MoO3-V2O5复合添加NiCuZn铁氧体性能的影响   总被引:1,自引:0,他引:1  
用传统陶瓷工艺制备了(Ni0.16Cu0.2Zn0.64O)1.02(Fe2O3)0.98铁氧体材料,研究了MoO3-V2O5复合添加对材料烧结特性和磁性能的影响.结果表明,复合添加MoO3-V2O5能促进样品致密化、提高起始磁导率和降低功耗.当MoO3为0.15wt%、V2O5为0.15wt%时,930℃烧结起始磁导率(μi>800)、功耗(305kW/m3)和密度(5.12 g/cm3)都达到较大值,比同样配方只掺杂MoO3的NiCuZn 材料明显提高.  相似文献   

18.
研究了预烧工艺对高磁导率MnZn铁氧体材料主要电磁性能的影响。结果表明,适宜的预烧温度可明显缓和该材料的磁导率与品质因数之间的矛盾,同时获得较高磁导率和较高的品质因数,即具有较低的比损耗因子和磁滞常数,同时其它参数也得到一定的改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号