首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以下吸式薪柴气化炉为研究对象,进行了热力计算,通过物料平衡和热量平衡,分析了各部分能量的比例,气化炉的碳转换率为92.6%,气化效率为75.4%。以热力计算的结果为依据,分析了薪柴气化燃烧与直接燃烧的经济性,同时分析了薪柴日消耗量及价格对下吸式气化炉经济性的影响。以薪柴日消耗为300kg的使用单位计算,引入薪柴气化设备,投资回收期小于半年,首年即可节约2.28万元,此后每年节约3.3万元。  相似文献   

2.
The behaviour of a downdraft rice husk gasifier of diameter 200 mm and a height 940 mm has been studied. The gasification rate was varied in the range 1.8–4.3 × 10?2 kg/m2s. The air velocity was varied in the range 0.032–0.099 m/s. The producer gas obtained from the gasifier has a calorific value in the range 3240–4382 kJ/m3. A set of theoretical kinetic equations on the assumption of nonequilibrium conditions has been developed and solved numerically. The simulated temperature profile and outlet gas composition have been compared with those obtained from experimental runs. The model developed from a mechanistic approach is found to explain the behaviour of the present system appreciably within the range of variables studied.  相似文献   

3.
A model of a downdraft gasifier has been developed based on chemical equilibrium in the pyro‐oxidation zone and finite rate kinetic‐controlled chemical reactions in the reduction zone. The char reactivity factor (CRF) in the reduction zone, representing the number of active sites on the char and its degree of burn out, has been optimized by comparing the model predictions against the experimental results from the literature. The model predictions agree well with the temperature distribution and exit gas composition obtained from the experiments at CRF=100. A detailed parametric study has been performed at different equivalence ratios (between 2 and 3.4) and moisture content (in the range of 0–40%) in the fuel to obtain the composition of the producer gas as well as its heating value. It is observed that the heating value of the producer gas increases with the increase in the equivalence ratio and decrease in the biomass moisture content. The effect of divergence angle of the reduction zone geometry (in the range of 30–150°) on the temperature and species concentration distributions in the gasifier has been studied. An optimum divergence angle, giving the best quality of the producer gas, has been identified for a particular height of the reduction zone. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
750 kW生物质燃料下吸式气化炉的设计   总被引:1,自引:0,他引:1  
目前推广的生物质气化集中供气系统的用户规模大都在100—200户左右.这种小型的供气系统只能满足单一的炊事用气需求,而且系统的单位建设成本高。下吸式气化炉是生物质气化集中供气系统中的核心设备,建设中等规模的生物质气化集中供气系统的关键技术是对下吸式气化炉进行设计,文中介绍了750kW生物质燃料下吸式气化炉的设计过程。  相似文献   

5.
The management of municipal solid waste (MSW) and the current status of world energy resources crisis are important problems. Gasification is a kind of waste-to- energy conversion scheme that offers the most attractive solution to both waste disposal and energy problems. In this study, the thermodynamic equilibrium model based on equilibrium constant for predicting the composition of producer gas in a downdraft waste gasifier was developed. To enhance the performance of the model, further modification was made by multiplying the equilibrium constants with coefficients. The modified model was validated with the data reported by different researchers. MSW in Thailand was then used to simulate and to study the effects of moisture content (MC) of the waste on the gasifier's performance. The results showed that the mole fraction of H2 gradually increases; CO decreases; CH4, which has a very low percentage in the producer gas increases; N2 slightly decreases; and CO2 increases with increasing MC. The reaction temperature, the calorific value, and the second law efficiency, decrease when MC increases.  相似文献   

6.
A small scale fixed bed downdraft gasifier system to be fed with agricultural and forestry residues has been designed and constructed. The downdraft gasifier has four consecutive reaction zones from the top to the bottom, namely drying, pyrolysis, oxidation and reduction zones. Both the biomass fuel and the gases move in the same direction. A throat has been incorporated into the design to achieve gasification with lower tar production. The experimental system consists of the downdraft gasifier and the gas cleaning unit made up by a cyclone, a scrubber and a filter box. A pilot burner is utilized for initial ignition of the biomass fuel. The product gases are combusted in the flare built up as part of the gasification system. The gasification medium is air. The air to fuel ratio is adjusted to produce a gas with acceptably high heating value and low pollutants. Within this frame, different types of biomass, namely wood chips, barks, olive pomace and hazelnut shells are to be processed. The developed downdraft gasifier appears to handle the investigated biomass sources in a technically and environmentally feasible manner. This paper summarizes selected design related issues along with the results obtained with wood chips and hazelnut shells.  相似文献   

7.
《能源学会志》2019,92(6):1977-1986
Energy can be extracted from biomass through gasification. The gasification process is influenced by the physico-chemical nature of the biomass selected for gasification. Ash content and composition of the biomasses are likely to affect the gasification process. Clinker formation in the reactor bed caused by melting and agglomeration of ashes will affect the gasification process in fluidised bed gasifiers. The agglomeration tendency of the biomass is examined by carrying out the Energy Dispersive X-ray Spectroscopy analysis on biomass ash to identify the presence of elements like potassium and sodium responsible for agglomeration. Experimental investigations on the gasification of coffee husk revealed that coffee husk is prone to agglomeration even though the hydrogen yield is more. However, gasification of saw dust is not vulnerable to agglomeration. Co-gasification of coffee husk with sawdust (which is less prone to agglomeration) is investigated experimentally.  相似文献   

8.
This study aimed at presenting a model to simulate downdraft biomass gasification under steady‐state or unsteady‐state conditions. The model takes into account several processes that are relevant to the transformation of solid biomass into fuel gas, such as drying; devolatilization; oxidation; CO2, H2O, and H2 reduction with char, pressure losses, solid and gas temperature, particle diameter, and bed void fraction evolution; and heat transfer by several mechanisms such as solid–gas convection, bed–wall convection, and radiation in the solid phase. Model validation is carried out by performing experiments in two lab‐scale downdraft fixed bed reactors (unsteady‐state conditions) and in a novel industrial pilot plant of 400 kWth–100 kWe (steady‐state conditions). The capability of the model to predict the effect of several factors (reactor diameter, air superficial velocity, and particle size and biomass moisture) on key response variables (temperature field, maximum temperature inside the bed, flame front velocity, biomass consumption rate, and composition and calorific value of the producer gas) is evaluated. For most response variables, a good agreement between experimental and estimated values is attained, and the model is able to reproduce the trend of variation of the experimental results. In general terms, the process performance improves with higher reactor diameter and lesser air superficial velocity, particle size, and moisture content of biomass. The steady‐state simulation appears to be a versatile tool for simulating different reactor configurations (preheating systems, variable geometry, and different materials). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A two dimensional modeling is developed in the reduction zone of a fixed bed downdraft biomass gasifier based on mass, energy and momentum conservation equations written for the solid and fluid phases and coupled with chemical kinetics. Kinetics parameters are derived from previous works and an effectiveness factor was used in the reaction rate correlation to quantify the mass transfer resistance in the bed. The obtained numerical results are compared with experimental and numerical data from literature and a reasonable agreement is observed. Fields of temperature, gaseous concentrations are investigated for the two-dimensional domain. Results show that the solid and fluid inlet temperatures to the reduction zone and the reactivity of the bio-char including the effectiveness factor are the main variables affecting the conversion of char to syngas in the gasification zone of the fixed bed reactor.  相似文献   

10.
Syngas production from biomass resources suggest considerable privileges to attain energy sustainability in future. Design and control strategies are essential to extend the technology of biomass gasifiers, which require reliable model developments. The overarching contribution of this study is to develop and evaluate a three-stage biomass gasifier model. The model consists of three successive sub-models for drying and pyrolysis, partial oxidation and char reduction reactors. The pyrolysis of raw material is simulated based on the ligno-cellulosic structure of the biomass by adopting comprehensive kinetic rate modelling approach. The partial oxidation sub-model is built by axis-symmetric 2D transport equations including detailed chemical scheme. Char reduction sub-model is extended based on axis-symmetric 2D DPM model accompanied by appropriate chemical kinetic scheme considering heterogeneous and homogeneous reactions. Accuracy of each sub-model is separately verified by comparison with available numerical and experimental data. Moreover, the correctness and predictability of the complete gasifier model is evaluated using two experimental reports. For both cases, investigations demonstrate high resolution agreement between the results of the developed model and available experimental measurements both thermally and chemically. Furthermore, a parametric analysis is conducted to investigate the gasifier performance against the variations of the main system operating parameters including the type of the feeding biomass and its moisture content, equivalence ratio and air initial temperature. Based on the results, higher volatiles mass fractions and lower char mass fraction have been produced from pyrolyzing of hardwood in comparison with beech wood. Also, Results reveal that with increase of the moisture content from 15% to 35%, syngas LHV and cold gas efficiency reduce by 1.9559 MJ. kg?1 and 25.78% respectively, while H2 mole fraction at the gasifier outlet rises by 0.90%. On the contrary, growth of equivalence ratio from 2 to 10 leads to the drastic increase of syngas LHV by 5.6404 MJ. kg?1, however, cold gas efficiency peaks to 82.75% at the equivalence ratio of 4. Besides, varying the inlet air temperature over a range of 500 K–1300 K causes 0.6938 MJ. kg?1 growth of syngas LHV as well as 9.43% rise of cold gas efficiency.  相似文献   

11.
A numerical model of a solar downdraft gasifier of biomass char (biochar) with steam based on the systems kinetics is developed. The model calculates the dynamic and steady state profiles, predicting the temperature and concentration profiles of gas and solid phases, based on the mass and heat balances. The Rosseland equation is used to calculate the radiative transfer within the bed. The char reactivity factor (CFR) is taken into account with an exponential variation. The bed heating dynamics as well as the steam velocity effects are tested. The model results are compared with different experimental results from a solar packed bed gasifier, and the temperature profile is compared to an experimental downdraft gasifier. Hydrogen is the principal product followed by carbon monoxide, the carbon dioxide production is small and the methane production is negligible, indicating a high quality syngas production. By applying the temperature gradient theory in the steam-only gasification process for a solar gasifier design, a solar downdraft gasifier improves the energy conversion efficiency by over 20% when compared to a solar packed bed gasifier. The model predictions are in good agreement with the experimental results found in the literature.  相似文献   

12.
D.K. Vyas  R.N. Singh   《Renewable Energy》2007,32(3):512-517
This paper presents the results of investigation carried out in studying the fuel properties of Jatropha seed husk and its gasification feasibility for open core down draft gasifier. Jatropha seed husk was converted to producer gas in an open core down draft gasifier whose performance was evaluated in terms of fuel consumption rate, calorific value of producer gas and gasification efficiency at different gas flow rates. It was found that producer gas calorific value and concentration of CO, along with gasification efficiency, in general, increased with the increase in gas flow rate. The maximum gasification efficiency was found to be 68.31% at a gas flow rate of 5.5 m3 h−1 and specific gasification rate of 270 kg h−1 m−2. Studies revealed that Jatropha seed husk could successfully be used as feedstock for open core down draft gasifier.  相似文献   

13.
《能源学会志》2020,93(4):1634-1641
This work aims at testing the suitability of waste wood as feedstock in an industrial combustion unit. Firstly, an extensive characterization of properties relevant for combustion was performed on two samples of waste wood and one sample of natural wood for comparison. Both waste wood samples were found to contain significantly higher amounts of metals such as iron and titanium than natural wood. However, one sample was much richer than the other one in all types of impurities, which resulted in a particularly high amount of ash (about 10 w %), and the sample was also found to contain many fine particles. These observations seemed to be explained by an external pollution of the sample by soil. Then, experiments were carried out in a bench-scale fixed-bed combustion unit on the different samples under variable conditions of air flow. All samples could be successfully burnt. However, the waste wood sample polluted with soil appeared to have a lower conversion rate due to its heterogeneity of particle size. A separation between fines and the rest of the sample seemed to solve this issue. Regarding gas emissions, as expected, both waste wood samples gave rise to higher amounts of NOx emissions than natural wood due to their content.  相似文献   

14.
The olive oil industry generates several solid wastes. Among these residues are olive tree leaves, prunings, and dried olive pomace (orujillo) from the extraction process. These renewable energy sources can be used for heat and power production. The aim of this paper consists of modelling and simulation of a small‐scale combined heat and power (CHP) plant (fuelled with olive industry wastes) incorporating a downdraft gasifier, gas cleaning and cooling subsystem, and a microturbine as the power generation unit. The gasifier was modelled with thermodynamic equilibrium calculations (fixed bed type, stratified and with an open top). This gasifier operates at atmospheric pressure with a reaction temperature about 800°C. Simulation results (biomass consumption, gasification efficiency, rated gas flow, calorific value, gas composition, etc.) are compared with a real gasification technology. The product gas obtained has a low heating value (4.8–5.0 MJ Nm?3) and the CHP system provides 30 kWe and 60 kWth. High system overall CHP efficiencies around 50% are achievable with such a system. The proposed system has been modelled using Cycle‐Tempo software®. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The dual-stage ignition biomass downdraft gasifier is an enormous tar reduction technology as against a single-stage ignition biomass gasification. Exergetic analysis of the system guides toward a possible performance enhancement. In dual-stage gasification, around 67.76% of input exergy is destructed in the several components, while 9.16% is obtained as a useful exergy output and 24.34% is found to be as a useful energy output there. The entire unit was assessed with a progressively rising electric load from 15.24 kW to 38.86 kW. The enhanced producer gas quality comes from 57% combustible gas with a higher heating value of 6.524 MJ/Nm3 and tar content of 7 mg/Nm3 after the paper filter, whereas the biomass consumption rate is 58 kg/h at the greatest load with the grate temperature of 1310–1370 °C. The samples of exhaust gas emissions are obtained environmentally favorable. The results even described that the dual-stage ignition biomass downdraft gasifier has significantly greater energetic and exergetic efficiency as compared to the single-stage gasifier.  相似文献   

16.
The main objective of this research is to investigate gasification of pine cones particles and wood pellets in a pilot scale 10 kWth downdraft fixed bed gasifier using air as an oxidizing agent. In this work, it was found that syngas produced by gasification of pinecones particles is rich in environmentally friendly hydrogen and that would be a clean alternative energy carrier for the production of clean energy. In addition, the effect of gasification temperature and equivalence ratio on the composition of syngas and gasification performance for pine cones and wood pellet were analysed comparatively. During the experimental works gasification took place with air, in a temperature range of 701–1046 °C, for various air equivalence ratios (0.14–0.37) and under atmospheric pressure. It is found that H2 and CO production increased by increasing reactor temperature. Another finding is that the mean cold gas efficiency was 65% for pinecone particles and 80% for wood pellet gasification.  相似文献   

17.
P. Plis  R.K. Wilk 《Energy》2011,36(6):3838-3845
This investigation concerns the process of air biomass gasification in a fixed bed gasifier. Theoretical equilibrium calculations and experimental investigation of the composition of syngas were carried out and compared with findings of other researchers. The influence of excess air ratio (λ) and parameters of biomass on the composition of syngas were investigated. A theoretical model is proposed, based on the equilibrium and thermodynamic balance of the gasification zone.The experimental investigation was carried out at a setup that consists of a gasifier connected by a pipe with a water boiler fired with coal (50 kWth). Syngas obtained in the gasifier is supplied into the coal firing zone of the boiler, and co-combusted with coal. The moisture content in biomass and excess air ratio of the gasification process are crucial parameters, determining the composition of syngas. Another important parameter is the kind of applied biomass. Despite similar compositions and dimensions of the two investigated feedstocks (wood pellets and oats husk pellets), compositions of syngas obtained in the case of these fuels were different. On the basis of tests it may be stated that oats husk pellets are not a suitable fuel for the purpose of gasification.  相似文献   

18.
Biomass micron fuel (BMF) produced from feedstock (energy crops, agricultural wastes, forestry residues and so on) through an efficient crushing process is a kind of powdery biomass fuel with particle size of less than 250 μm. Based on the properties of BMF, a cyclone gasifier concept has been considered in our laboratory for biomass gasification. The concept combines and integrates partial oxidation, fast pyrolysis, gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas. In this paper, characteristics of BMF air gasification were studied in the gasifier. Without outer heat energy input, the whole process is supplied with energy produced by partial combustion of BMF in the gasifier using a hypostoichiometric amount of air. The effects of equivalence ratio (ER) and biomass particle size on gasification temperature, gas composition, gas yield, low-heating value (LHV), carbon conversion and gasification efficiency were studied. The results showed that higher ER led to higher gasification temperature and contributed to high H2-content, but too high ER lowered fuel gas content and degraded fuel gas quality. A smaller particle was more favorable for higher gas yield, LHV, carbon conversion and gasification efficiency. And the BMF air gasification in the cyclone gasifier with the energy self-sufficiency is reliable.  相似文献   

19.
Rice husk was utilized in the production of syngas, silica and activated carbon. Experiments were performed in two-stage gasifier for the production of syngas. The syngas is generated with minimum tar yields due cracking of tar at high temperature. Rice husk char obtained from the pyrolysis stage of the reactor was used in the silica extraction process to obtain silica and activated carbon. Using nitrogen as pyrolysis agent high purity (88.46%) silica was obtained with a good quality of syngas as compared to air as pyrolysis agent. Highest surface area of 276.91 m2/gm of silica was found at 500?C.  相似文献   

20.
The behaviour of an updraft moving bed gasifier of diameter 76 mm and height 787 mm, with rice husk as a fuel, has been studied. The gasification rate of the rice husk was varied in the range of 3.5–12.5 × 10?3 kg/m2 s. The air velocity was varied in the range of 0.07–0.11 m/s. The producer gas obtained from the gasifier has a calorific value in the range of 3712–4464 kJ/m3. A set of theoretical kinetic equations on the assumption of nonequilibrium conditions has been developed and solved numerically. The simulated temperature profile and outlet gas composition have been compared with those obtained from experimental runs. This model, which is developed from a mechanistic approach, can appreciably explain the behaviour of the present system within the range of variables studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号