首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
万兆以太网物理层全集成单片锁相环电路   总被引:1,自引:1,他引:0  
给出了一个采用 0 .2μm Ga As PHEMT工艺实现的单片集成高速锁相环电路。芯片采用差分电感电容谐振式负跨导压控振荡器 ,总面积为 0 .9mm× 0 .7mm。采用 3.3V单电源供电 ,测得芯片总功耗为 2 83m W,输出功率约 - 1 1 d Bm,中心频率 7.2 GHz,锁定范围为± 30 0MHz。环路锁定在 7.2 GHz时 ,输出信号的峰 -峰抖动约 5 .6ps,在 5 0 k Hz频偏处的单边带相位噪声为 - 94d Bc/Hz。本锁相环电路经适当修改可应用于万兆以太网物理层 IEEE80 2 .3ae1 0 GBASE- R或 1 0 GBASE- W时钟恢复电路。  相似文献   

2.
摘要:给出了一个采用012μm GaAs PHEMT工艺设计的全集成差分负阻式LC 压控振荡器电路,芯片面积为0152 × 017 mm2 。采用313 V 正电源供电,测得输出功率约- 11122 dBm ,频率调节范围61058 GHz~91347 GHz ;在自由振荡 频率712 GHz 处,测得的单边带相位噪声约为- 82 dBc/ Hz @100 kHz.  相似文献   

3.
我们使用的原子束发散角为4.7×10~(-3)弧度,残余多谱勒宽度7兆赫;一束线宽为6兆赫的可调谐染料激光与它正交。激光诱导荧光信号经调制接收放大后予以记录,使激光频率在30GHz范围扫描。测得~6Li 和~7Li 的2~2P 能级的精细结构分裂分别为9.7±0.4和10.5±0.5GHz;2~2P_(1/2)能级的同位素位移为10.7±0.6GHz。激光频率作2.5GHz 扫描。光强4毫瓦/厘米~2时,测得~7Li 的2~2P_(1/2)←2~2S_(1/2)跃迁的四条超精细结构谱线的间距依次为88±11,730±73,92±7MHz,  相似文献   

4.
给出了一个适用于万兆以太网IEEE80 2 3ae 10GBASE -X的高线性度全集成单片环形压控振荡器电路。该压控振荡器采用TSMC 0 18μmCMOS混合信号工艺设计制造 ,由四级差分延时单元和输出驱动电路组成 ,芯片总面积为 0 3× 0 4mm2 。芯片采用 1 8V单电源供电 ,测得带直接耦合差分 5 0Ω负载时的总功耗为 78mW ,单端输出功率为 10 2dBm ,振荡频率在 2 8~ 4 0GHz有非常好的压控线性度 ,在振荡器中心频率为 3 12 5GHz时的单边带相位噪声为 - 96dBc/Hz@10MHz。  相似文献   

5.
该组件是将输入信号 (1 5 GHz,1 0 d Bm)倍频至 3 0 GHz,与本振信号 (5 GHz,1 0 d Bm)上变频到 3 5 GHz,然后进行功率放大输出。其倍频部分采用 Ga As PHEMT有源倍频并进行放大 ,混频电路采用 Ga As二极管的双平衡混频 ,滤波放大后由 8mm波导输出。最终结果为输出频率为 3 5 GHz,输出功率为 1 7d Bm,谐波抑制度大于 40 d BC,偏离中心频率± 2 0 0 MHz带宽内 ,幅度不平坦度小于 1 .5 d B。整个组件尺寸仅为 60 mm×2 2 mm× 1 5 mm。  相似文献   

6.
采用标准的湿法刻蚀工艺研制出了 S波段工作的非自对准 Al Ga As/ Ga As异质结双极晶体管 .对于总面积为 8× 2 μm× 10 μm的 HBT器件 ,测得其直流电流增益大于 10 ,电流增益截止频率 f T 大于 2 0 GHz,最高振荡频率fmax大于 30 GHz.连续波功率输出为 0 .3W,峰值功率附加效率 41%  相似文献   

7.
利用国内先进的 0 .6μm数字 Si-MOS工艺 ,设计了射频 MOSFET,并研究了其 DC和微波特性 :I-V曲线、S参数、噪声参数和输出功率。研究发现 ,数字电路用 Si MOSFET的频率响应较高 :频率为 1 GHz时功率增益可达 1 0 d B,2 GHz时为 8d B,4GHz时为 5 d B。 1 .8GHz时 ,1分贝压缩输出功率 1 2 .8d Bm,饱和输出功率可达 1 8d Bm,且最小噪声系数为 3 .5 d B。用提取的参数设计并研制了微波 Si MOSFET低噪声放大器 ,以验证MOS器件的微波性能。此放大器由两级级联而成 ,单电源供电 ,输入输出电容隔直。在频率 1 .7~ 2 .2 GHz的范围内 ,测得放大器增益 1 5± 0 .5 d B,噪声系数 N F<3 .8d B,1分贝压缩输出功率 1 2 d Bm;在频率 1 .5~ 2 .5 GHz的范围内 ,放大器增益大于 1 3 d B。  相似文献   

8.
利用0 35μm CMOS工艺实现了一种用于低中频接收机的Gilbert型下变频器.其中,混频器的输出级采用折叠级联输出,射频信号、本振信号和中频信号的频率分别为2 452GHz,2 45GHz和2MHz.测试表明:在3 3V电源电压条件下,整个混频器电路消耗的电流约为4mA,转换增益超过6dB,输入1dB压缩点约为-11dBm.  相似文献   

9.
HMC156C8是Hittite Microwawe推出的GaAsMMIC倍频器,其输入频率范围为0.7~2.3GHz,输出频率为1.4GHz~4.6GHz,转换损耗小于18dB。中心频率fo、3fo和4fo相对于输入电平的隔离分别为47dB、55dB和42dB,输入驱动电平为10~20dBm,该芯片采用Hittite公司的MMIC技术,不需直流偏压,尺寸小。采用非密封陶瓷表面封装,工作温度为-55~+85℃。 咨询编号:001243  相似文献   

10.
本文设计了一种适用于2.4GHz锁相环的LC压控振荡器,采stoic0.13ffCMOS工艺,中心频率2.4GHz,频率调谐范围136MHz,在1.8v电压下工作时,静态电流为5mA,在偏离中心频率1MHz处,测得相位噪声为-111dBc/Hz。  相似文献   

11.
给出了基于 0 .2 um Ga As PHEMT工艺的 10 GHz单片频率综合器的系统模型、电路结构、性能分析、版图设计以及仿真结果 ,并简单介绍了工艺特点。整个芯片由压控振荡器、分频器、鉴相器以及低通滤波器组成。在 ADS软件下的仿真结果表明 :芯片采用 3 .3 V单电源供电 ,总功耗为 40 0 m W,输出功率为 -15 d Bm,工作频率 9.5 GHz~ 11.0 GHz,相位噪声 -95 d Bc/Hz@1MHz,输出信号的峰峰值抖动约为 2 ps。整个芯片面积为 1.2 5× 1.3 5 mm2 ,适合作为万兆以太网的时钟产生电路  相似文献   

12.
据《’99IEEE MTT- s Digest MO1 A- 1》报道 ,德国戴姆勒·克莱斯勒研究中心和柏林弗尔南得·布朗大学共同研制了采用 Si Ge- HBT MMIC的 47GHz振荡器。该振荡器的输出功率为 1 3.1 d Bm,效率为 1 3.6 % ,距载波 1 0 0 k Hz的相位噪声为 - 99.31 d Bc/Hz。其结果对 Si Ge- HBT振荡器而言是相当优异的。Si Ge- HBT的特征频率 ( f T)为 1 2 6 GHz,最大振荡频率 ( fmax)为 1 6 0GHz图  4 7GHz振荡器图示Fig.  Photo of the4 7GHz oscillator47GHz SiGe-MMIC振荡器@孙再吉…  相似文献   

13.
本论文实现了频率为7.656GHz全集成正交输出CMOS锁相环。该锁相环可以用作MB-OFDM超宽带频率综合器的一个基本模块。为了使环路快速稳定,该锁相环采用整数型结构,指定输入参考频率为66MHz,并且采用了一个宽带的正交压控振荡器,把两个交叉耦合LC压控振荡器通过底部串联耦合来产生正交载波。在0.18微米CMOS工艺和1.5V电源电压下,该锁相环消耗电流16mA(包含驱动电路),测得相位噪声在1MHz频偏处为-109 dBc/Hz。其中测得正交压控振荡器的频率调谐范围为6.95GHz至8.73GHz。整个芯片的核心面积为1×0.5mm2。  相似文献   

14.
王文骐  池懿  李长生 《微波学报》2005,21(Z1):104-106
基于TSMC 0.25μm CMOS工艺,将一个普通MOS管改进为工作在积累区的MOS变容管,实现了一工作于2.4GHz的全集成压控振荡器(VCO).测试结果表明,采用积累型MOS变容管的VCO具有较大的调谐范围.在2.5V工作电压下,控制电压从0~2.2V,VCO的频率调节范围为2.210~2.484GHz,在2.4GHz时相位噪声为-105dBc/Hz@600kHz,输出功率为-7.55dBm,电流损耗为7mA.芯片面积约为0.35mm2.  相似文献   

15.
摘要:运用口径耦合理论、腔模理论、反相馈电技术和多层贴片结构设计出一种新型的P波段(中心频率为0.75GHz)宽带双极化微带贴片天线。天线的两个极化端口采用共面馈电;馈电网络设计中采用短路耦合线实现反相馈电。仿真结果表明该天线两个极化端口实际增益均达到8.5dB,水平极化端口在0.64-0.85GHz频率范围内驻波比小于2,相对带宽为28%;垂直极化端口在0.68-0.85GHz频率范围内驻波比小于2,相对带宽为22.6%,两端口隔离度高于53dB。  相似文献   

16.
姚瑶  张萧  胡江  延波 《微波学报》2012,28(S1):266-269
首次采用低温共烧陶瓷(LTCC)技术的设计出频率在34.2 GHz 时相位延迟为32λg 和 1λg 的带状线延迟线。 延迟线具有低插损、低色散的特性。由于LTCC 独特的工艺特点,实现结构的小型化和结构紧凑性。文中设计的32λg 和 1λg 延迟线的尺寸分别为7 × 5 × 3 mm3和2 × 1.5 × 3 mm3。最终仿真结果也证明该方案的优越性:对于32λg 延迟线,在 34.2GHz 时插入损耗为3.39dB,在34.1-34.3GHz 频段内插损优于5.068dB,驻波小于2.1;1λg 延迟线,在中心频率34.2GHz 插入损耗为0.316dB, 34.1-34.3GHz 频段上优于0.317dB,驻波小于1.25。  相似文献   

17.
提出了一种新的相位开关实现技术 .基于这种技术设计了一个 2 / 3分频器单元 ,该单元结构简单 ,工作频率高 ,功耗低 .为了验证该技术 ,采用 0 .2 5μm CMOS数字工艺实现了一个 12 8/ 12 9双模预分频器 .对该芯片的测试结果表明其能正确工作于 GHz频率范围 .当工作频率为 2 .3GHz时 ,它消耗的电流仅为 13.5 m A(2 .5 V电源电压 ) ,芯片面积为 0 .4 7mm× 0 .4 7m m.  相似文献   

18.
本文讨论在Ku波段(15~18GHz和12~15GHz)上快速建立振荡的基频输出压控振荡器,它是用硅双极晶体管和硅变容二极管构成。这些振荡器输出频率建立时间在2μs以内,最终频率在±1MHz范围内。在载波100kHz频率跨度、16.2GHz下测得相位噪声为-93dBc/Hz。  相似文献   

19.
提出了一种应用于ISM频段的低相位噪声LC VC0。电路采用TSMC 0.18μm1P6M混合信号CMOS工艺进行设计,芯片版图面积740μm×700μm。在电源电压为1.8V时,后仿真结果表明,电路工作频率为2.4GHz时,调谐范围为23%。在偏离中心频率1MHz处,相位噪声为-124.2dBc/Hz。核心部分功耗约为7.56mW。  相似文献   

20.
采用0.18µm 1P6M CMOS工艺实现了一种应用于多频接收机的整数分频频率综合器。该频率综合器为接收机提供频率分别为2.57GHz, 2.52GHz, 2.4GHz 和 2.25GHz的本振信号。为了覆盖要求的频点,其宽带压控振荡器同时采用了可变电容阵列和可变电感阵列。经测试,压控振荡器的频率调谐范围为1.76GHz~2.59GHz。对于频率为2.57GHz, 2.52GHz, 2.4GHz 和 2.25GHz的载波,在1MHz频偏处,相位噪声分别为-122.13dBc/Hz、-122.19dBc/Hz、-121.8dBc/Hz和-121.05dBc/Hz。其带内相位噪声分别为-80.09dBc/Hz、-80.29dBc/Hz、-83.05dBc/Hz 和-86.38dBc/Hz。包括驱动电路在内的芯片功耗约为70mW。芯片面积为1.5mm×1mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号