首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of digital communication systems over generalized-K (K/sub G/) fading channels is analyzed and evaluated. Novel closed form expressions for the SNR statistics, the average Shannon's channel capacity and the bit error rate (BER) are derived. These expressions are used to study important performance criteria such as the outage performance, the average capacity and the BER for a great variety of modulation formats in K/sub G/ fading channels. The proposed mathematical analysis is accompanied with various performance evaluation results, which demonstrate the usefulness of the proposed approach.  相似文献   

2.
In this letter, a detailed performance analysis of generalized selection combining GSC(2,3) receivers operating over independent but not necessarily identically distributed (n.i.d.) generalized-K (KG) fading channels is presented. For this class of receivers, a novel closed-form expression for the moments of the output signal-to-noise ratio (SNR) is derived. This result can be afterwards used to evaluate the outage probability and the average symbol error probability of different signal constellations. Various performance evaluation results are also presented and compared to equivalent simulation ones.  相似文献   

3.
On diversity reception over fading channels with impulsive noise   总被引:2,自引:0,他引:2  
In this paper, we analyze the performance of different diversity combining techniques over fading channels with impulsive noise. We use Middleton's Class A model for the noise distribution and adopt two noise models, which assume dependent and independent noise components on each branch. We systematically analyze the performance of maximum ratio combing (MRC), equal gain combining (EGC), selection combining (SC), and post-detection combining (PDC) under these impulsive noise models, and derive insightful lower and upper bounds. We show that even under impulsive noise, the diversity order is retained for each combining scheme. However, we also show that under both models, there is a fundamental tradeoff between diversity gain and coding gain. Under the independent noise model, PDC is shown to combat impulsive noise more effectively than MRC, EGC, and SC. Our simulation results also corroborate our analysis.  相似文献   

4.
We consider the problem of multiantenna reception of nonorthogonal multipulse signals in a multiuser system operating over a flat-flat Nakagami fading channel, wherein each user sends an M-ary information symbol by transmitting one out of M available waveforms. The receiver first-stage is a decorrelative filter, which gets rid of the MAI, and whose output, is then properly processed in order to decode the information symbols from the user of interest. In particular, we derive both the optimum noncoherent and the GLRT detectors, and show that the latter receiver not only is simpler to implement, but also achieves a performance level very similar to that of the former receiver  相似文献   

5.
Two approximations to the Shannon capacity of a maximal-ratio combining (MRC) diversity system are proposed in terms of the diversity factor (DF). Asymptotic analysis shows that the approximations are identical to the true capacity in the low-SNR regime and have the same slope but different power offsets in the high-SNR regime. For Rayleigh-fading environments, the power offset differences are derived and shown to be considerably small quantities. Thus, the DF can be considered as an effective measure of the asymptotic capacity improvement offered by MRC diversity reception in Rayleigh fading channels.  相似文献   

6.
Kam  P.Y. Tay  S.Y. 《Electronics letters》1994,30(13):1022-1023
An adaptive estimator of the complex gain of a fading channel is proposed. Tracking of the fading process is achieved without knowledge of the fading spectrum. This enables coherent detection of MPSK to be performed. Simulations show good error rate performance. The receiver finds applications in mobile radio communications  相似文献   

7.
Closed form expressions for the average probability of packet error (PPE) are presented for no diversity, maximum ratio combining (MRC), selection combining (SC) and switch and stay combining (SSC) diversity schemes. The average PPE for the no diversity case is obtained in two alternative expressions assuming arbitrarily correlated Nakagami and Rician fading channels. For the MRC case, L diversity branches are considered and the channel samples are assumed to follow Nakagami distribution and to be arbitrarily correlated in both time and space. For the SC diversity scheme with L diversity branches, two bounds on the average PPE are derived for both slow and fast fading channels. The average PPE in this case is obtained in an infinite integral form for Nakagami channels while it is reduced to a closed form expression for the Rayleigh case. The average PPE is also derived in the case of SSC diversity with dual branches for both slow and fast Rayleigh fading channels. The new formulas are applicable for all modulation schemes where the conditional probability of error has an exponential dependence on the signal‐to‐noise ratio. The average PPE is then used to obtain a modified expression for the throughput for network protocols. In general, the diversity gain exhibits a little diminishing effect as the number of diversity branches increases. In addition, the system is found to be more sensitive to the space correlation than to the time correlation. The effects of different system parameters and diversity schemes are studied and discussed. Specific figures about the system performance are also provided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates a transform that provides diversity to words of symbols transmitted over fading channels. This diversity transform (DRT) does not alter the distance between the input words nor the bandwidth or the information rate. The transform is based on an orthonormal transform and thus increases the channel alphabet. A considerable diversity gain is achieved over Rayleigh fading channel with perfect channel state information (CSI) and interleaving. The transform performances are evaluated both analytically and by simulation, and optimal transforms are determined for specific channels. Finally, a simple nonoptimal decoding scheme is developed, which provides a powerful and practical technique to transfer information over fading channels with or without coding  相似文献   

9.
This paper analyzes the average bit error probability (BEP) of the differential binary and quaternary phase-shift keying (DBPSK and DQPSK respectively) with multiple-input multiple-output (MIMO) systems employing postdetection equal gain combining (MIMO EGC) diversity reception over Rayleigh fading channels. Finite closed-form expressions for the average BEP of DBPSK and DQPSK are presented. Two approaches are introduced to analyze the error rate of DQPSK. The proposed structure for the differential phase-shift keying (DPSK) with MIMO EGC provides a reduced-complexity and low-cost receiver for MIMO systems compared to the coherent phase-shift keying system (PSK) with MIMO employing maximal ratio combining (MIMO MRC) diversity reception. Finally, a useful procedure for computing the associated Legendre functions of the second kind with half-odd-integer order and arbitrarily degree is presented.  相似文献   

10.
We compute the error performance of noncoherent detection receivers for FSK signals transmitted over fast frequency-flat Rician fading channels. Linearly time-varying fading models are used to derive closed-form expressions for the error probability of binary FSK signaling. Error bounds are established for the performance of M-ary orthogonal FSK. Simulation results are in excellent agreement with analytical predictions  相似文献   

11.
The mobile wireless channel affords inherent diversity to combat the effects of fading. Existing code-division multiple-access systems, by virtue of spread-spectrum signaling and RAKE reception, exploit only part of the channel diversity via multipath combination. Moreover, their performance degrades under fast fading commonly encountered in mobile scenarios. In this paper, we develop new signaling and reception techniques that maximally exploit channel diversity via joint multipath-Doppler processing. Our approach is based on a canonical representation of the wireless channel, which leads to a time-frequency generalization of the RAKE receiver for diversity processing. Our signaling scheme facilitates joint multipath-Doppler diversity by spreading the symbol waveform beyond the intersymbol duration to make the channel time-selective. A variety of detection schemes are developed to account for the intersymbol interference (ISI) due to overlapping symbols. However, our results indicate that the effects of ISI are virtually negligible due to the excellent correlation properties of the pseudorandom codes. Performance analysis also shows that relatively small Doppler spreads can yield significant diversity gains. The inherently higher level of diversity achieved by time-selective signaling brings the fading channel closer to an additive white Gaussian noise channel, thereby facilitating the use of powerful existing coding techniques for Gaussian channels  相似文献   

12.
Rateless coding over fading channels   总被引:3,自引:0,他引:3  
We propose a framework for communication over fading channels utilizing rateless codes. An implementation using fountain codes is simulated, demonstrating that such a scheme has advantages in efficiency, reliability and robustness over conventional fixed-rate codes, particularly when channel state information is not available at the transmitter.  相似文献   

13.
An investigation is reported of an acquisition system for digital communication over fading dispersive channels that is optimum in the maximum-likelihood sense. A performance measure for the synchronizer in the acquisition mode is defined. Upper and lower bounds on the performance measure are derived. The effective bounds on parameters, such as signal-to-noise ratio, pulse width and modulation, number of pulses, spread of the channel, and the size of the resolution cell, on the performance of the synchronizer is investigated  相似文献   

14.
A method for computing the average bit-error probability of binary differential phase-shift keying (DPSK) and frequency shift-keying (FSK) signals transmitted over Nakagami asymptotically slow fading channels with postdetection diversity reception is presented to extend previously published results. The previously published results apply only for maximum ratio combining, i.e., with predetection combining, where phase coherency is necessary. The results for postdetection combining are derived with the explicit expressions for the most practical cases of independent channels and particular cases of correlated channels  相似文献   

15.
This paper introduces a multistage interference cancellation (MIC) technique with diversity reception for quadrature phase shift keying (QPSK) asynchronous direct-sequence code division multiple access (DS/CDMA) systems over frequency-selective multipath Rayleigh fading channels. Unlike the previous MIC, which tries to remove the lump sum of the multiple-access interference (MAI) and self-interference (SI), this introduced MIC attempts to cancel only the MAI and part of the SI due to the intersymbol interference, while treating the remaining SI created by the current symbol as useful information for symbol decision. In this technique, the RAKE combining is used to collect signal replicas over multiple fading paths. Upper and lower bounds on the bit error probability are derived using a Gaussian approximation and the characteristic function method. Furthermore, effects of channel estimation error on the performance are studied. Analytical and simulation results show that the introduced MIC can provide a performance extremely close to that in an ideal single-user environment and outperforms the previous MIC even in the presence of channel estimation error  相似文献   

16.
Building on the developments in the performance analysis of generalized selection combining (GSC), this paper examines the optimum spreading bandwidth for a fixed-complexity GSC diversity receiver operating over independent identically distributed Rayleigh paths. For this purpose, the study considers three performance criteria: (1) average combined signal-to-noise ratio (SNR) at the GSC output; (2) average bit error probability (BEP); and (3) outage probability of the instantaneous combined SNR at the GSC output. For the average BEP criterion, results are presented for both coherent and noncoherent combining. For the average combined SNR and some instances of the average BEP optimization problem, an accurate approximate estimate of this optimum bandwidth in the form of a solution of a transcendental equation is provided. In other cases, where the optimization is not easily tractable in an analytic fashion, a numeric-search procedure is used to find this optimum bandwidth for different performance criteria and system parameters of interest. Finally, simplified rule-of-thumb-type formulas are also presented as a good reference for picking the optimum spreading bandwidth given a set of system parameters and a particular performance criterion of interest  相似文献   

17.
In this paper, a novel pilot‐symbol‐aided (PSA) technique is proposed for fading estimation in the land mobile satellite fading channels. The proposed technique combines the fading estimates obtained from a bandwidth‐efficient technique and a conventional technique according to the signal‐to‐noise ratios (SNRs) of the fading estimates. To enhance the transmission quality, trellis‐coded modulation (TCM) and diversity reception are employed in the system, and the combined estimates are subsequently used to correct the channel fading effects, to weight the signals from different diversity branches, and to provide channel state information to the Viterbi decoder. Monte Carlo computer simulation has been used to study the bit‐error‐rate (BER) performance of the proposed technique on trellis‐coded 16‐ary quadrature amplitude modulation in the frequency non‐selective Rician fading channels. Results have shown that the proposed PSA technique requires a very low bandwidth redundancy to provide satisfactory BER performance at low SNRs, and thus is suitable for use with TCM and diversity reception to achieve both bandwidth and power‐efficient transmission. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we derive closed form upper bounds on the error probability of low-density parity-check (LDPC) coded modulation schemes operating on quasi-static fading channels. The bounds are obtained from the so-called Fano- Gallager?s tight bounding techniques, and can be readily calculated when the distance spectrum of the code is available. In deriving the bounds for multiple-input multiple-output (MIMO) systems, we assume the LDPC code is concatenated with the orthogonal space-time block code as an inner code. We obtain an equivalent single-input single-output (SISO) channel model for this concatenated coded-modulation system. The upper bounds derived here indicate good matches with simulation results of a complete transceiver system over Rayleigh and Rician MIMO fading channels in which the iterative detection and decoding algorithm is employed at the receiver.  相似文献   

19.
Optimum power control over fading channels   总被引:1,自引:0,他引:1  
We study optimal constant-rate coding schemes for a block-fading channel with strict transmission delay constraint, under the assumption that both the transmitter and the receiver have perfect channel-state information. We show that the information outage probability is minimized by concatenating a standard “Gaussian” code with an optimal power controller, which allocates the transmitted power dynamically to the transmitted symbols. We solve the minimum outage probability problem under different constraints on the transmitted power and we derive the corresponding power-allocation strategies. In addition, we propose an algorithm that approaches the optimal power allocation when the fading statistics are not known. Numerical examples for different fading channels are provided, and some applications discussed. In particular, we show that minimum outage probability and delay-limited capacity are closely related quantities, and we find a closed-form expression for the delay-limited capacity of the Rayleigh block-fading channel with transmission over two independent blocks. We also discuss repetition diversity and its relation with direct-sequence or multicarrier spread-spectrum transmission. The optimal power-allocation strategy in this case corresponds to selection diversity at the transmitter. From the single-user point of view considered in this paper, there exists an optimal repetition diversity order (or spreading factor) that minimizes the information outage probability for given rate, power, and fading statistics  相似文献   

20.
A novel FH/MFSK receiver is proposed which utilises the side information of interfering signals for asynchronous frequency hopping multiple-access (FHMA) systems in the presence of Rayleigh fading. It is shown that the novel receiver performs much better than the conventional receiver for a wide range of signal to noise ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号