首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Mouse NK lymphocytes express Ly-49 receptors, which inhibit cytotoxicity upon ligation by specific MHC I molecules on targets. Different members of the lectin-like mouse Ly-49 receptor family recognize distinct subsets of murine H-2 molecules, but the molecular basis for the allelic specificity of Ly-49 has not been defined. We analyzed inhibition of natural killing by chimeric MHC I molecules in which the alpha1, alpha2, or alpha3 domains of the Ly-49A-binding allele H-2Dd were exchanged for the corresponding domains of the nonbinding allele H-2Db. Using the Ly-49A-transfected rat NK cell line, RNK-mLy-49A.9, we demonstrated that the H-2Dd alpha2 domain alone accounts for allelic specificity in protection of rat YB2/0 targets in vitro. We also showed that the H-2Dd alpha2 domain is sufficient to account for the allele-specific in vivo protection of H-2b mouse RBL-5 tumors from NK cell-mediated rejection in D8 mice. Thus, in striking contrast to the alpha1 specificity of Ig-like killer inhibitory receptors for human HLA, the lectin-like mouse Ly-49A receptor is predominantly restricted by the H-2Dd alpha2 domain in vitro and in vivo.  相似文献   

2.
The MHC class I molecule H-2Dd (Dd) acts as a ligand for the inhibitory NK cell receptor Ly-49A. We have constructed altered Dd molecules by site-directed mutagenesis, replacing residues with the corresponding amino acids from the Db molecule, which fails to inhibit via Ly-49A. Mutations at positions 73 and 156 (DdS73WD156Y) impaired the protective effect of the Dd molecule, as evaluated by testing lymphoma cells transfected with the mutant gene for sensitivity to killing by Ly-49A+ NK cells in vitro and rejection by NK cells in vivo. The altered residues form a hydrophobic ridge across the floor of the antigen binding cleft. A mutation in the alpha helix of the alpha2 domain, facing the solvent and without direct contact with the peptide (DdA150S) had no effect. Dd recognition by Ly-49A+ NK cells is considered to be peptide dependent, but not peptide specific. Our results indicate that alterations of residues buried in the antigen binding cleft can induce changes in peptide binding patterns and/or conformational changes in the Dd molecule that make the trimolecular complex less permissive for inhibition of Ly-49A+ NK cells.  相似文献   

3.
The recognition of class I MHC molecules on target cells by the Ly-49 family of receptors regulates NK cytotoxicity. Previous studies have suggested that carbohydrates are involved in the recognition of class I MHC by Ly-49, although their precise role remains unclear. Here, we examined the role of asparagine-linked carbohydrates of the murine class I MHC in the binding to Ly-49A and Ly-49C. We have generated H-2Dd mutants that lack the highly conserved glycosylation sites at amino acid residues 86 in the alpha1 domain and 176 in the alpha2 domain, respectively. These mutant Dd cDNAs were transfected into leukemic cell lines, and the binding of the transfected cells to COS cells expressing Ly-49A or Ly-49C, as well as their susceptibility to lysis by Ly-49A+ NK cells, was examined. Only the mutation of the alpha2 domain glycosylation site significantly reduced the binding of Dd to Ly-49A and Ly-49C. Cells expressing Dd with the mutation at this site were partially resistant to killing by Ly-49A+ NK cells. These results suggest that, while carbohydrates linked to residue 176 seem to function as a part of the ligand structure for the Ly-49 family of NK receptors, there are additional structural features involved in this recognition. This glycosylation site is highly conserved among murine class I MHC but is not found among those of other species, suggesting that its role is unique to the murine immune system. It further suggests that murine class I MHC and Ly-49 gene families may have evolved in concert.  相似文献   

4.
OBJECTIVES: The polymerase chain reaction (PCR)-based method was used to obtain and sequence three H-2K and three H-2D mouse complementary DNAs (cDNA) of class I major histocompatibility complex (MHC) molecules. METHODS: Messenger RNA was isolated from Conconavalin A-activated splenocytes of C57BL/10 (H-2b), C3H (H-2k), and Balb/c (H-2d) mice. We designed H-2K- and H-2D-specific primers as well as a common downstream primer based on previously published mouse class I MHC sequences. Using the PCR method and selective primers we isolated and sequenced H-2Kb and H-2Db cDNAs of C57BL/10, H-2Kk and H-2k cDNAs of C3H, as well as H-2Kd and H-2Dd cDNAs of Balb/c strains. RESULTS: Analysis of the nucleotide sequences documented similarity between our three H-2K cDNA sequences and all mouse MHC class I sequences available in the GenBank. Similarly, our three H-2D sequences were homologous with all mouse class I MHC sequences deposited in the GenBank. Our H-2K and H-2D sequences were also identical to numerous published sequences. CONCLUSIONS: Using these mouse cDNAs, we plan to determine the localization of polymorphic in vivo immunogenic amino acids in class I MHC H-2K and H-2D alloantigens.  相似文献   

5.
The murine Ly-49 antigen belongs to a family of type II transmembrane molecules containing lectin-like domains. The original member of this family, Ly-49A, has been demonstrated to be expressed by a subpopulation of natural killer (NK) cells, bind certain class I major histocompatibility complexes (MHC), and act as a negative regulator of lytic activity. The expression patterns and functional activities of the other Ly-49s, however, is unknown. We extended the study of this family by isolating cDNAs encoding two new Ly-49 molecules. The reactivity of these and previously identified Ly-49 molecules with NK antibodies was tested in a COS cell expression system. YE1/32 and YE1/48 bound Ly-49A specifically, and 5E6 reacted only with Ly-49C. Three-color flow cytometric analysis demonstrated Ly-49A and Ly-49C expression defines complex, but distinct subsets within NK1.1+ cells. Some NK1.1-CD3+ as well as NK1.1-CD3- cells expressing Ly-49A or C were also detected. Analysis of MHC congenic strains of mice demonstrated that YE1/32+ and YE1/48+ NK cells are not deleted, as has been shown with the Ly-49A mAb A1. Furthermore, COS cells transfected with Ly-49A bound H-2d and H-2k cell lines, whereas Ly-49C transfectants bound H-2d, H-2k, H-2b, and H-2s. The antibodies 5E6 and 34-1-2S (anti-class I MHC) inhibited the binding of Ly-49C to an H-2s cell line. These results imply that the NK cell antigens Ly-49A and C bind to different repertoires of class I MHC molecules.  相似文献   

6.
The Ly-49 gene families are class I-recognizing receptors on murine NK cells. Most Ly-49 receptors inhibit NK cell lysis upon recognizing their target class I ligands. In this report we have examined the ability of Ly-49A and Ly-49G2 to regulate T cell functions on CD3+ cells, primarily the subset that also expresses NK-1.1 and/or DX5. The majority (>50%) of T cells that express Ly-49 molecules also coexpress NK-1.1 and/or DX5, although some NK-1.1- and/or DX5-/CD3+ cells express Ly-49 molecules. Lysis of target cells by IL-2-cultured T cells expressing Ly-49A and G2 was enhanced by Abs specific for Ly-49A and G2 as well as by Abs to class I (H-2Dd alpha1/alpha2). Murine T cells also were cultured in the presence of targets that express (H-2Dd) which is inhibiting for the Ly-49A and G2 receptors. These cells were examined for a coincident increase in cytokine production (IFN-gamma, TNF-alpha, and granulocyte-macrophage CSF). Abs to Ly-49A and G2 or their respective class I ligands blocked the negative signals mediated via the Ly-49 receptors and increased IFN-gamma and granulocyte-macrophage CSF production after interaction of these T cells with H-2Dd-expressing tumor targets. Furthermore, an EL-4 T cell line expressing both Ly-49A and G2, when treated with mAb YE148 and 4D11, demonstrated reduced cytokine production and calcium mobilization. These results demonstrate for the first time that Ly-49 class I binding receptors, previously thought to be restricted to mouse NK cells, can mediate important physiological functions of T cell subsets.  相似文献   

7.
Introduction of the MHC class I transgene H-2Dd on C57BL/6 (B6) background conveys NK cell-mediated "missing self" reactivity against transgene-negative cells, and down-regulates expression of the inhibitory receptors Ly49A and Ly49G2 in NK cells. We here present an analysis of transgenic mice expressing chimeric H-2Dd/Ld MHC class I transgenes, and show that the alpha1/alpha2 domains of H-2Dd were necessary and sufficient to induce "missing self" recognition and to down-modulate Ly49A and Ly49G2 receptors. In contrast, transgenes containing the alpha1/alpha2 domains of H-2Ld induced none of these changes, suggesting that not all MHC class I alleles in a host necessarily take part in NK cell education. The lack of effect of the alpha1/alpha2 domains of H-2Ld on NK cell specificity was surprising, considering that both H-2Ld and H-2Dd have been reported to interact with Ly49G2. Therefore, the role of H-2Ld for protection against NK cells expressing Ly49G2 was re-investigated in a transfection system. In contradiction to earlier reports, we show that H-2Dd, but not H-2Ld, abolished killing by sorted Ly49G2+ NK cells, indicating that H-2Ld does not inhibit NK cells via the Ly49G2 receptor.  相似文献   

8.
Radioresistant host elements mediate positive selection of developing thymocytes, whereas bone marrow-derived cells induce clonal deletion of T cells with receptors that are strongly autoreactive. In contrast to T cell development, little is known about the elements governing the natural killer (NK) cell repertoire, which, similar to the T cell repertoire, differs between individuals bearing different major histocompatibility complex (MHC) phenotypes. We have used murine bone marrow transplantation models to analyze the influence of donor and host MHC on an NK cell subset. We examined the expression of Ly-49, which is strongly expressed on a subpopulation of NK cells of H-2b mice, but not by NK cells of H-2a mice, probably because of a negative effect induced by the interaction of Ly-49 with Dd. To evaluate the effect of hematopoietic cell H-2a expression on Ly-49 expression of H-2b NK cells, we prepared mixed allogeneic chimeras by administering T cell-depleted allogeneic (B10.A, H-2a) and host-type (B10, H-2b) marrow to lethally irradiated B10 mice, or by administering B10. A marrow to B10 recipients conditioned by a nonmyeloablative regimen. Expression of H-2a on bone marrow-derived cells was sufficient to downregulate Ly-49 expression on both H-2a and H-2b NK cells. This downregulation was thymus independent. To examine the effect of H-2a expressed only on radioresistant host elements, we prepared fully allogeneic chimeras by administering B10 bone marrow to lethally irradiated B10.A recipients. B10 NK cells of these fully allogeneic chimeras also showed downregulation of Ly-49 expression. The lower level of H-2a expressed on H-2b x H-2a F1 cells induced more marked downregulation of Ly-49 expression on B10 NK cells when presented on donor marrow in mixed chimeras than when expressed only on radioresistant host cells. Our studies show that differentiation of NK cells is determined by interactions with MHC molecules expressed on bone marrow-derived cells and, to a lesser extent, by MHC antigens expressed on radioresistant host elements.  相似文献   

9.
The expression of certain major histocompatibility complex (MHC) class I ligands on target cells is one important determinate of their susceptibility to lysis by natural killer (NK) cells. NK cells express receptor molecules that bind to MHC class I. Upon binding to their MHC class I ligand, the NK cell is presumed to receive a signal through its receptor that inhibits lysis. It is unclear what role the MHC class I molecules of the effector and target cells play in signaling to the NK cell. We have investigated the role of the cytoplasmic and transmembrane domains of MHC class I molecules by producing a glycosylphosphatidylinositol (GPI)-linked H-2Dd molecule. The GPI-linked H-2Dd molecule is recognized by H-2Dd-specific antibodies and cytotoxic T lymphocytes. Expression of the GPI-linked H-2Dd molecule on H-2b tumor cells resulted in protection of the tumor cells after transplantation into D8 mice (H-2b, H-2Dd) from rejection by NK cells. In addition, NK cells from mice expressing the GPI-linked H-2Dd molecule as a transgene were able to kill nontransgenic H-2b lymphoblast target cells. The GPI-linked MHC class I molecule was able to alter NK cell specificity at the target and effector cell levels. Thus, the expression of the cytoplasmic and transmembrane domains of MHC class I molecules are not necessary for protection and alteration of NK cell specificity.  相似文献   

10.
Leukaemia-specific proteins may be recognized by T-lymphocytes as neoantigens if peptides corresponding to mutated sequences bind to major histocompatibility complex (MHC) molecules on leukaemic cells. We studied the ability of a series of synthetic peptides corresponding to the junctional sequences of BCR/ABL proteins to bind to class I molecules in two human cell lines, LBL 721.174 (T2) (HLA-A2, B5) and BM36.1 (HLA-A1, B35), and one murine cell line RMA-S (H-2Kb, Db). These cell lines are defective in intracellular peptide loading of class I molecules, resulting in markedly reduced cell surface class I expression: class I expression can be rescued by provision of peptides binding to the alleles expressed by the mutant cell. Eighteen peptides spanning the junctional sequences of the b2a2 and b3a2 proteins were tested for their ability to rescue expression of the class I alleles borne by these cells using flow cytometry. Allele-specific control peptides known to bind HLA-A2, HLA-B35, H-2Kb and H-2Db increased expression of these alleles 2- to 3-fold: 0/18 BCR/ABL peptides enhanced HLA-A2, HLA-B35 or H-2Kb expression, but three b2a2 peptides consistently increased H-2Db expression. These results suggest that BCR/ABL junctional peptides are unlikely to be presented to T-cells in association with HLA-A2, HLA-B35 or H-2Kb. Conversely, the finding that some b2a2 peptides bind specifically to H-2Db suggests that a murine model of graft-versus-leukaemia (GVL) could be constructed.  相似文献   

11.
Expression of the H-2Dd-specific inhibitory receptor Ly49A on murine NK cells is subject to MHC class I-dependent modulation in vivo. As a result, NK cells in H-2Dd-transgenic mice express low cell surface levels of Ly49A, whereas NK cells from nontransgenic C57BL/6 (B6) mice express high levels. The purpose of this study was to assess the role of MHC class I molecules on the NK cell itself vs those on surrounding cells in this calibration and to test whether the Ly49A levels are subject to regulation in mature NK cells also. Analysis of transgenic mice with mosaic expression of an H-2Dd/Ld transgene showed that MHC class I molecules on surrounding cells (external ligands) and on the NK cell itself (internal ligands) played distinct roles in the determination of Ly49A levels. External ligands were involved in down-regulation of Ly49A levels in vivo, whereas internal ligands kept the down-regulated levels of Ly49A low upon NK cell activation in vitro. Furthermore, in an experimental system based on adoptive transfer of spleen cells, receptor down-regulation of Ly49A occurred as a rapid adaptation process in mature NK cells after interaction with the H-2Dd ligand in vivo. This suggests that Ly49 levels are not fixed but can be changed in mature NK cells when they are exposed to a changed MHC class I environment.  相似文献   

12.
Intracellular transport and stability of class I MHC glycoproteins depends on the assembly of H chain, beta 2-microglobulin, and peptide. The Ag processing mutant cell lines T2 and RMA-S have defects in peptide loading of class I, resulting in reduced cell surface expression of class I molecules. Expression of class I molecules in the murine cell line RMA-S can be induced at 26 degrees C, suggesting that they are transported to the cell surface, but are unstable. However, most human class I molecules in T2 are poorly expressed at the cell surface, even at 26 degrees C. To directly compare the transport of human and mouse alleles in RMA-S and T2, the human alleles HLA-A2, A3, and B27 were transfected into RMA-S along with human beta 2-microglobulin, and the mouse alleles H-2Kb and Db were transfected into T2. Surface expression of HLA-A3 and B27 in RMA-S remained less than 10% of wild-type levels at 26 degrees C. H-2Kb and Db in both cell lines, however, were expressed at 20 to 30% wild-type levels at 37 degrees C and could be induced to wild-type levels at 26 degrees C or with peptides. The selective expression of murine class I glycoproteins at the cell surface of T2 is not because of their greater stability when associated with human beta 2m, since H-2Kb and Db H chain/human beta 2m complexes dissociate more rapidly in vitro than HLA-A3 and B27 complexes. These results suggest that the difference in transport between human and mouse class I in T2 reflects a fundamental structural property of the class I glycoproteins.  相似文献   

13.
The crystal structure of the mouse major histocompatibility complex (MHC) class I molecule H-2Dd with an immunodominant peptide, designated P18-I10 (RGPGRAFVTI), from human immunodeficiency virus envelope glycoprotein 120 was determined at 3.2 A resolution. A novel orientation of the alpha3 domain of Dd relative to the alpha1/alpha2 domains results in significantly fewer contacts between alpha3 and beta2-microglobulin compared with other MHC class I proteins. Four out of ten peptide residues (P2 Gly, P3 Pro, P5 Arg and P10 Ile) are nearly completely buried in the Dd binding groove. This is consistent with previous findings that Dd exploits a four-residue binding motif comprising a glycine at P2, a proline at P3, a positively charged residue at P5, and a C-terminal hydrophobic residue at P9 or P10. The side-chain of P5 Arg is directed toward the floor of the predominantly hydrophobic binding groove where it forms two salt bridges and one hydrogen bond with Dd residue Asp77. The selection of glycine at P2 appears to be due to a narrowing of the B pocket, relative to that of other class I molecules, caused by Arg66 whose side-chain folds down into the binding cleft. Residue P3 Pro of P18-I10 occupies part of pocket D, which in Dd is partially split by a prominent hydrophobic ridge in the floor of the binding groove formed by Trp97 and Trp114. Residues P6 through P9 form a solvent-exposed bulge, with P7 Phe protruding the most from the binding groove and thereby probably constituting a major site of interaction with T cell receptors. A comparison of H-2Dd/P18-I10 with other MHC class I/peptide complexes of known structure provides insights into the possible basis for the specificity of the natural killer cell receptor Ly-49A for several related class I molecules.  相似文献   

14.
The effect of MHC class I gene transfection on the metastatic properties of B16BL6 melanoma cells was investigated. BL6-8 melanoma cells transfected with H-2Kb or H-2Kd, but not H-2Dd or H-2Ld, genes showed a dramatic reduction in their ability to generate experimental metastases in immunosuppressed CB6F1 mice. This observation suggested that some changes in the metastatic phenotype may have been induced in the H-2K- transfected melanoma cells. Analyses of adhesive and invasive properties of BL6-8 melanoma cells transfected with H-2 class I genes have been performed. We found that the loss of metastatic properties in the H-2Kb or H-2Kd gene-transfected melanoma cells was associated with reduced adherence to endothelial cells, laminin and collagen IV, decreased ability to form homotypic cell aggregates and with a complete loss of VLA-4 integrin expression. In addition, BL6-8 melanoma cells transfected with H-2K genes demonstrated reduced ability to invade Matrigel that paralleled up-regulation of TIMP-1 expression. Incubation of untransfected BL6-8 clone or B16F1 cells with 5-azacytidine similarly resulted in up-regulation of TIMP-1, suggesting that the changes in methylation of TIMP-1 gene could be responsible for TIMP-1 expression in the H-2K-transfected BL6-8 melanoma cells. Transfection of BL6-8 cells with the H-2Dd/Ld genes did not affect their adhesive and invasive properties. Previously we reported that reduction in the metastatic properties of the H-2Kb transfected cells was associated with alterations in cell surface carbohydrates with appearance of alpha-galactosyl epitopes and reduction in cell surface sialylation. The present data indicate that, in addition to changes in cell surface carbohydrates, reduction in adhesive properties and up-regulation of TIMP-1 may be responsible for the observed loss of metastatic potential of BL6-8 cells transfected with the H-2K genes.  相似文献   

15.
Fetal calf serum is a well known source of bovine beta2-microglobulin (beta2m) which can exchange with endogenous beta2m from, as well as promote peptide binding to, class I major histocompatibility (MHC I) molecules on cells cultured in vitro. Recombinant bovine beta2m was expressed and purified for direct functional comparison to human and murine beta2m for interactions with murine MHC I molecules H-2Kb, Db, Kd, Ld, and Dd. Bovine and human beta2m were equivalent in stabilizing MHC I heavy chains and facilitating peptide loading, suggesting similar affinities for murine MHC I heavy chains. The activity of murine beta2m was significantly weaker, consistent with previous work that demonstrated the lower affinity of murine human beta2m for murine heavy chains compared to human beta2m. Analysis of bovine beta2m in fetal calf serum revealed ten-fold higher concentrations than in adult bovine serum, levels shown to significantly affect MHC I stability and peptide loading. The ramifications for the study of MHC I molecules from cells in culture and the evolutionary implications of the higher affinity interactions of human and bovine beta2m are discussed.  相似文献   

16.
Clonally distributed inhibitory receptors negatively regulate natural killer (NK) cell function via specific interactions with allelic forms of major histocompatibility complex (MHC) class I molecules. In the mouse, the Ly-49 family of inhibitory receptors is found not only on NK cells but also on a minor (NK1.1+) T cell subset. Using Ly-49 transgenic mice, we show here that the development of NK1.1+ T cells, in contrast to NK or conventional T cells, is impaired when their Ly-49 receptors engage self-MHC class I molecules. Impaired NK1.1+ T cell development in transgenic mice is associated with a failure to select the appropriate CD1-reactive T cell receptor repertoire. In normal mice, NK1.1+ T cell maturation is accompanied by extinction of Ly-49 receptor expression. Collectively, our data imply that developmentally regulated extinction of inhibitory MHC-specific receptors is required for normal NK1.1+ T cell maturation and selection.  相似文献   

17.
Ly-49 molecules are used by NK cells to distinguish 'self' from 'non-self', but the determinants of Ly-49 expression that allow this distinction to be made are not understood. The education of NK cells for self/non-self recognition was studied in murine mixed allogeneic bone marrow chimeras, in which NK cells are of both host and donor origin. Marked alterations in Ly-49 receptor expression were observed on both host and donor NK cells developing in BALB/c --> B6 mixed chimeras. Ly-49A and Ly-49G2 expression was lower on host B6 NK cells of mixed chimeras compared to non-transplanted B6 controls. Among donor BALB/c NK cells, Ly-49C expression levels were reduced, but the proportion of Ly-49C+ cells was increased, whereas Ly-49G2 expression was up-regulated compared to non-transplanted BALB/c controls. Thus, Ly-49 expression on donor and host NK cells developing post-bone marrow transplantation evolves toward the expression pattern of the host and donor strains respectively, due to the presence of the allogeneic MHC. In vitro functional NK cell assays showed that donor NK cells in mixed chimeras were not tolerant to host antigens and that host NK cells were not tolerant to the donor. Our data are consistent with a model in which MHC expression in the environment has a dominant down-regulating effect on the expression of Ly-49 molecules that recognize those MHC molecules, regardless of whether they are self or allogeneic. This down-regulation, combined with the limited repertoire of Ly-49 molecules, may not be sufficient to allow NK cells to be tolerant of MHC antigens of a fully MHC-mismatched allogenic strain.  相似文献   

18.
Ly-49D is an activating receptor on NK cells that does not become tyrosine phosphorylated upon activation. This report demonstrates that immunoprecipitation of Ly-49D, following pervanadate treatment or specific Ab cross-linking, coprecipitates a 16-kDa tyrosine-phosphorylated protein (pp16). Immunoblotting experiments and data from TCR-zeta/Fc epsilonRIgamma double knockout mice confirm that pp16 is not TCR-zeta, TCR-eta, or Fc epsilonRIgamma. Association of pp16 with Ly-49D involves a transmembrane arginine since mutation to leucine (Ly-49D[R54L]) abolishes association with pp16 in transfected P815 cells. In addition, Ly-49D(R54L) transfectants fail to mediate Ca2+ mobilization following Ab cross-linking. Therefore, signaling through Ly49D on NK cells depends on association with a distinct tyrosine phosphoprotein (pp16) in a manner analogous to that of TCR and FcR. Expression of this novel signaling peptide in both the NK and myeloid lineages indicates that pp16 is likely involved in the signal transduction cascade of additional receptor families.  相似文献   

19.
We have investigated the capacity of human MHC class I HLA-B gene products, HLA-B27, -B7 (fully human), and -B7kb (human-mouse hybrid consisting of the alpha1 and alpha2 domains of HLA-B7, and the alpha3 and cytoplasmic domains of mouse H-2Kb), expressed on mouse NK cells during ontogeny to influence NK recognition of otherwise syngeneic mouse target cells. Despite a high level of surface expression of the transgene (comparable to that of endogeneous H-2DbKb molecules), the direct killing of YAC-1 targets, and the killing of P815 targets in a redirected lysis assay, the NK effectors of these transgenic mice could not mediate hybrid resistance-like killing of nontransgenic C57BL/6 target cells either in vitro or in vivo. Splenocytes from B6-B27 mice could be used to generate CTL lines against a B27-binding peptide, implying that T cells restricted by HLA-B27 developed during ontogeny. NK cells from B6-B27 could lyse B6-B27 Con A lymphoblasts pulsed with Db-binding peptide but not B27-binding peptides. Taken together, our results show that these human HLA-B transgene products cannot function as class I MHC "self" elements for mouse NK cells, even when present throughout ontogeny.  相似文献   

20.
Class I-restricted CD8+ cytotoxic T lymphocytes (CTL) against the circumsporozoite protein (CSP) protect mice against the rodent malaria parasite, Plasmodium yoelii, and vaccines designed to produce protective CTL against the P. falciparum CSP (PfCSP) are under development. Humans and B10.BR (H-2k) mice have been shown to have CD8+ CTL activity against a 23-amino-acid region of the PfCSP (residues 368 to 390 from the PfCSP 7G8 sequence) that is too long to bind directly to class I major histocompatibility complex molecules. To identify within this 23-amino-acid peptide a shorter peptide that binds to an H-2k class I major histocompatibility molecule, a primarily CD8+ (97.8%) T-cell line (PfCSP TCL.1) was produced by immunizing B10.BR mice with recombinant vaccinia virus expressing the PfCSP and stimulating in vitro spleen cells from these immunized mice with L cells transfected with the PfCSP gene (LPF cells). PfCSP TCL.1 lysed LPF cells and L cells pulsed with peptide PfCSP 7G8 368-390. When 15 overlapping nonamer peptides spanning the 368 to 390 sequence were tested, only one peptide, PfCSP 7G8 375-383 (Y E N D I E K K I), which includes an H-2Kk-binding motif, E at amino acid residue 2, and I at residue 9, sensitized targets for lysis by PfCSP TCL.1. Furthermore, a 10(3)- to 10(4)-fold lower concentration of the nonamer than that of the 23-amino-acid peptide was required to sensitize target cells for lysis by PfCSP TCL.1. Presentation by H-2Kk was demonstrated by using 3T3 fibroblast cells transfected with the murine H-2Kk or H-2Dk genes, and only the H-2Kk transfectants were lysed by PfCSP TCL.1 after incubation with peptide PfCSP 7G8 375-383. Binding to H-2Kk was confirmed by competitive inhibition of binding of labelled peptides to affinity-purified Kk molecules. Substitution of the anchor amino acid residue, E, at position 2 with A dramatically reduced binding to Kk and eliminated the capacity of the peptide to sensitize target cells for killing. Variation of non-anchor residues did not markedly reduce binding to Kk but in some cases eliminated the capacity of the peptide to sensitize targets for cytolysis by PfCSP TCL.1, presumably by eliminating T-cell receptor-binding sites. These data suggest that similar studies with human T cells will be required for optimal development of peptide-based vaccines designed to produce protective class I-restricted CD8+ CTL against the PfCSP in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号