首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AE1 is the chloride/bicarbonate anion exchanger of the erythrocyte plasma membrane. We have used scanning cysteine mutagenesis and sulfhydryl-specific chemistry to identify pore-lining residues in the Ser643-Ser690 region of the protein. The Ser643-Ser690 region spans transmembrane segment 8 of AE1 and surrounds Glu681, which may reside at the transmembrane permeability barrier. Glu681 also directly interacts with some anions during anion transport. The introduced cysteine mutants were expressed by transient transfection of HEK293 cells. Anion exchange activity was assessed by measurement of changes of intracellular pH, which follow transmembrane bicarbonate movement mediated by AE1. To identify residues that might form part of an aqueous transmembrane pore, we measured anion exchange activity of each introduced cysteine mutant before and after incubation with the sulfhydryl reagents para-chloromercuribenzene sulfonate and 2-(aminoethyl)methanethiosulfonate hydrobromide. Our data identified transmembrane mutants A666C, S667C, L669C, L673C, L677C, and L680C and intracellular mutants I684C and I688C that could be inhibited by sulfhydryl reagents and may therefore form a part of a transmembrane pore. These residues map to one face of a helical wheel plot. The ability to inhibit two intracellular mutants suggests that transmembrane helix 8 extends at least two helical turns beyond the intracellular membrane surface. The identified hydrophobic pore-lining residues (leucine, isoleucine, and alanine) may limit interactions with substrate anions.  相似文献   

2.
The cytochrome b subunit of the ubiquinol:cytochrome c oxidoreductase (the bc1 complex) contains two heme prosthetic groups, cytochrome bL and cytochrome bH. In addition, this subunit also provides major elements of the quinol oxidation site (Qo) and a separate quinone reductase site (Qi), which are thought to be located on opposite sides of the membrane. Site-directed mutagenesis has been used to explore the role(s) of specific amino acid residues in this subunit from the photosynthetic bacterium Rhodobacter sphaeroides. Previous work identified five residues, Gly48 (Gly33), Ala52 (Gly37), His217 (His202), Lys251 (Lys228), and Asp252 (Asp229), as being either at or near the quinone reductase site (the residue numbers in parentheses designate the equivalent positions in the yeast mitochondrial enzyme). These residues are predicted to be near the cytoplasmic boundaries of transmembrane helices: helix A (G48, A52), helix D (H217), or helix E (K251, D252). In the current work, the importance of two additional highly conserved residues, which are also predicted to be near the cytoplasmic boundaries of transmembrane helices, is explored by site-directed mutagenesis. R114 (helix B) has been substituted with K, Q, and A, and W129 (helix C) has been changed to A and F. The results suggest that a positively charged residue at position 114 is important. The R114K mutation causes only subtle effects, which appear to be localized to cytochrome bH and the quinone reductase site. In contrast, R114Q is not assembled, and R114A, although partially assembled, is nonfunctional and appears to have a very low amount of cytochrome b associated with the complex. Both mutants at position 129 (W129A and W129F) are able to support the photosynthetic growth of the organism, but show abnormal characteristics. The defects associated with the W129A mutation appear to be primarily associated with the quinone reductase site and cytochrome bH, whereas the W129F mutation appears to result in more global defects that also perturb the cytochrome bL locus. The results are consistent with the placement of residues R114 and W129 near the cytoplasmic side of the membrane, but suggest that these residues are important for the assembly and overall stability of the complex.  相似文献   

3.
Each amino acid in the putative transmembrane helix III and its flanking regions (from Gly-62 to Tyr-98) of the Tn10-encoded metal-tetracycline/H+ antiporter (Tet(B)) was individually replaced with Cys. Out of these 37 cysteine-scanning mutants, the mutants from G62C to R70C and from S92C to Y98C showed high or intermediate reactivity with [14C]N-ethylmaleimide (NEM) except for the M64C mutant. On the other hand, the mutants from R71C to S91C showed almost no reactivity with NEM except for the P72C mutant. These results confirm that the transmembrane helix III is composed of 21 residues from Arg-71 to Ser-91. The majority of Cys replacement mutants retained high or moderate tetracycline transport activity. Cys replacements for Gly-62, Asp-66, Ser-77, Gly-80, and Asp-84 resulted in almost inactive Tet(B) (less than 3% of the wild-type activity). The Arg-70 --> Cys mutant retained very low activity due to a mercaptide between Co2+ and a SH group (Someya, Y., and Yamaguchi, A. (1996) Biochemistry 35, 9385-9391). Three of these six important residues (Ser-77, Gly-80, and Asp-84) are located in the transmembrane helix III and one (Arg-70) is located in the flanking region. These four functionally important residues are located on one side of the helical wheel. Only two of the residual 31 Cys mutants were inactivated by NEM (S65C and L97C). Ser-65 and Leu-97 are located on the cytoplasmic and periplasmic loops, respectively, in the topology of Tet(B). The degree of inactivation of these Cys mutants with SH reagents was dependent on the volume of substituents. In the presence of tetracycline, the reactivity of the S65C mutant with NEM was significantly increased, in contrast, the reactivity of L97C was greatly reduced, indicating that the cytoplasmic and periplasmic loop regions undergo substrate-induced conformational change in the mutually opposite direction.  相似文献   

4.
Seven arginine residues are conserved in all the tetracycline/H+ antiporters of Gram-negative bacteria. Four (Arg67, -70, -71, and -127) of them are located in the putative cytoplasmic loop regions and three (Arg31, -101, and -238) in the putative periplasmic loop regions [Eckert, B., and Beck, C. F. (1989) J. Biol. Chem. 264, 11663-11670]. These arginine residues were replaced by alanine, lysine, or cysteine one by one through site-directed mutagenesis. None of the mutants showed significant alteration of the protein expression level. The mutants resulting in the replacement of Arg31, Arg67, Arg71, and Arg238 with either Ala, Cys, or Lys retained tetracycline resistance levels comparable to that of the wild type. Among them, only the Arg238 --> Ala mutant showed very low transport activity in everted membrane vesicles, probably due to the instability of the mutant protein. The replacement of Arg70 and Arg127 with Ala or Cys resulted in a drastic decrease in the drug resistance and almost complete loss of the transport activity, while the Lys replacement mutants retained significant resistance and transport activity, indicating that the positively charged side chains at these positions conferred the transport function. On the other hand, neither the Ala, Cys, nor Lys replacement mutant of Arg101 exhibited any drug resistance or transport activity. As for the reactivity of the Cys replacement mutants, only two (Arg71 --> Cys and Arg101 --> Cys) were not reactive with NEM, the other five mutants being highly or moderately reactive. The reactivity of the cysteine-scanning mutants around Arg101 with NEM revealed that Arg101 is located in transmembrane helix IV. It is not likely that Arg101 confers the protein folding through a salt bridge with a transmembrane acidic residue because no double mutants involving Arg101 --> Ala and the replacement of one of three transmembrane acidic residues (Asp15, Asp84, and Asp285) showed the recovery of any tetracycline resistance or transport activity. The effect of tetracycline on the [14C]NEM binding to the combined mutants S65C/R101A and L97C/R101A suggests that Arg101 may cause a substrate-induced conformational change of the putative exit gate of TetA(B).  相似文献   

5.
Cysteine-scanning mutants, E32C to G62C, of the metal-tetracycline/H+ antiporter were constructed in order to precisely determine the membrane topology around putative transmembrane segment II. None of the mutants lost the ability to confer tetracycline resistance, indicating that the cysteine mutation in each mutant did not alter the protein conformation. [14C]N-Ethylmaleimide (NEM) binding to these cysteine mutants in isolated membranes was then investigated. The peptide chain of this region passes through the membrane at least once because residues 36 and 65 are exposed on the outside and inside surfaces of the membrane, respectively (Kimura, T., Ohnuma, M., Sawai, T., and Yamaguchi, A. (1997) J. Biol. Chem. 272, 580-585). However, there was no continuous segment in which all of the introduced cysteine residues showed almost no reactivity with [14C]NEM. The proportion of the unbound positions in the second half downstream from position 45 was 55% (10/18), which was clearly higher than that in the first half (21%; 3/14), suggesting that the second half is a transmembrane segment. Positions reactive to NEM appear periodically in the second half. They are located on one side of the helical wheel, suggesting that this side of the transmembrane helix faces a water-filled channel. The cysteine mutants as to the reactive positions in the second half were severely inactivated by NEM except for the P59C mutant, whereas the A40C mutant was the only one inactivated by NEM in the first half. These results suggest that the water-filled channel along this helical region may be a substrate translocation pathway.  相似文献   

6.
A 12-residue peptide AcDKDGDGYISAAENH2 analogous to the third calcium-binding loop of calmodulin strongly coordinates lanthanide ions (K = 10(5) M-1). When metal saturated, the peptide adopts a very rigid structure, the same as in the native protein, with three last residues AAE fixed in the alpha-helical conformation. Therefore, the peptide provides an ideal helix nucleation site for peptide segments attached to its C terminus. NMR and CD investigations of peptide AcDKDGDGYISAAEAAAQNH2 presented in this paper show that residues A13-Q16 form an alpha-helix of very high stability when the La3+ ion is bound to the D1-E12 loop. In fact, the lowest estimates of the helix content in this segment give values of at least 80% at 1 degreesC and 70% at 25 degreesC. This finding is not compatible with existing helix-coil transition theories and helix propagation parameters, s, reported in the literature. We conclude, therefore, that the initial steps of helix propagation are characterized by much larger s values, whereas helix nucleation is even more unfavorable than is believed. In light of our findings, thermodynamics of the nascent alpha-helices is discussed. The problem of CD spectra of very short alpha-helices is also addressed.  相似文献   

7.
Cytochrome bo is a four-subunit quinol oxidase in the aerobic respiratory chain of Escherichia coli and functions as a redox-coupled proton pump. Subunit I binds all the redox metal centers, low-spin heme b, high-spin heme o, and CuB, whose axial ligands have been identified to be six invariant histidines. This work explored the possible roles of the aromatic amino acid residues conserved in the putative transmembrane helices (or at the boundary of the membrane) of subunit I. Sixteen aromatic amino acid residues were individually substituted by Leu, except for Tyr61 and Trp282 by Phe and Phe415 by Trp. Leu substitutions of Trp280 and Tyr288 in helix VI, Trp331 in loop VII-VIII, and Phe348 in helix VIII reduced the catalytic activity, whereas all other mutations did not affect the in vivo activity. Spectroscopic analyses of the purified mutant enzymes revealed that the defects were attributable to perturbations of the binuclear center. On the basis of these findings and recent crystallographic studies on cytochrome c oxidases, we discuss the possible roles of the conserved aromatic amino acid residues in subunit I of the heme-copper terminal oxidases.  相似文献   

8.
The multicopy c subunit of the H+-transporting ATP synthase of Escherichia coli folds through the transmembrane F0 sector as a hairpin of two hydrophobic alpha-helices with the proton-translocating aspartyl-61 side chain centered in the second transmembrane helix. The number of subunits c in the F0 complex, which is thought to determine the H+-pumping/ATP stoichiometry, was previously not determined with exactness but thought to range from 9-12. The studies described here indicate that the exact number is 12. Based upon the precedent of the subunit c in vacuolar-type ATPases, which are composed of four transmembrane helices and seem to have evolved by gene duplication of an F0-type progenitor gene, we constructed genetically fused dimers and trimers of E. coli subunit c. Both the dimeric and trimeric forms proved to be functional. These results indicate that the total number of subunit c in F0 should be a multiple of 2 and 3. Based upon a previous study in which the oligomeric organization of c subunits in F0 was determined by cross-linking of Cys-substituted subunits (Jones, P. C. , Jiang, W., and Fillingame, R. H. (1998) J. Biol. Chem. 273, 17178-17185), we introduced Cys into the first and last transmembrane helices of subunit c monomers, dimers, and trimers and attempted to generate cross-linked products by oxidation with Cu(II)-(1,10-phenanthroline)2. Double Cys substitutions at two sets of positions gave rise to extensive cross-linked multimers. Multimers of the monomer that extended up to the position of c12 were correlated and calibrated with distinct cross-linked species of the appropriate doubly Cys-substituted dimers (i.e. c2, c4, . c12) and doubly Cys-substituted trimers (i.e. c3, c6, c9, c12). The results show that there are 12 copies of subunit c per F0 in E. coli, the exact number having both mechanistic and structural significance.  相似文献   

9.
We have studied the effects of single charged residues on the position of a model transmembrane helix in the endoplasmic reticulum membrane using the glycosylation mapping technique. Asp and Glu residues cause a re-positioning of the C-terminal end of the transmembrane helix when placed in the one to two C-terminal turns but not when placed more centrally. Arg and Lys residues, in contrast, have little effect when placed in the two C-terminal turn but give rise to a more substantial shift in position when placed 9-11 residues from the helix end. We suggest that this difference between the effects of positively and negatively charged residues can be explained by the so-called snorkel effect, i.e. that the very long side-chains of Arg and Lys can reach up along the transmembrane helix to allow the terminal, charged moiety to reside in the lipid headgroup region while the Calpha of the residue is positioned well below the membrane/water interface.  相似文献   

10.
Interaction of monoglucosylated oligosaccharides with ER lectins (calnexin and/or calreticulin) facilitates glycoprotein folding but this interaction is not essential for cell viability under normal conditions. We obtained two distinct single Schizosaccharomyces pombe mutants deficient in either one of the two pathways leading to the formation of monoglucosylated oligosaccharides. The alg6 mutant does not glucosy- late lipid-linked oligosaccharides and transfers Man9GlcNAc2 to nascent polypeptide chains and the gpt1 mutant lacks UDP-Glc:glycoprotein glucosyltransferase (GT). Both single mutants grew normally at 28 degreesC. On the other hand, gpt1/alg6 double-mutant cells grew very slowly and with a rounded morphology at 28 degreesC and did not grow at 37 degreesC. The wild-type phenotype was restored by transfection of the double mutant with a GT-encoding expression vector or by addition of 1 M sorbitol to the medium, indicating that the double mutant is affected in cell wall formation. It is suggested that facilitation of glycoprotein folding mediated by the interaction of monoglucosylated oligosaccharides with calnexin is essential for cell viability under conditions of extreme ER stress such as underglycosylation of proteins caused by the alg6 mutation and high temperature. In contrast, gls2/alg6 double-mutant cells that transfer Man9GlcNAc2 and that are unable to remove the glucose units added by GT as they lack glucosidase II (GII), grew at 37 degreesC and had, when grown at 28 degreesC, a phenotype of growth and morphology almost identical to that of wild-type cells. These results indicate that facilitation of glycoprotein folding mediated by the interaction of calnexin and monoglucosylated oligosaccharides does not necessarily require cycles of reglucosylation-deglucosylation catalyzed by GT and GII.  相似文献   

11.
The soluble portion of the Escherichia coli F1F0 ATP synthase (ECF1) and E. coli F1F0 ATP synthase (ECF1F0) have been isolated from a novel mutant gammaY205C. ECF1 isolated from this mutant had an ATPase activity 3.5-fold higher than that of wild-type enzyme and could be activated further by maleimide modification of the introduced cysteine. This effect was not seen in ECF1F0. The mutation partly disrupts the F1 to F0 interaction, as indicated by a reduced efficiency of proton pumping. ECF1 containing the mutation gammaY205C was bound to the membrane-bound portion of the E. coli F1F0 ATP synthase (ECF0) isolated from mutants cA39C, cQ42C, cP43C, and cD44C to reconstitute hybrid enzymes. Cu2+ treatment or reaction with 5,5'-dithio-bis(2-nitro-benzoic acid) induced disulfide bond formation between the Cys at gamma position 205 and a Cys residue at positions 42, 43, or 44 in the c subunit but not at position 39. Using Cu2+ treatment, this covalent cross-linking was obtained in yields as high as 95% in the hybrid ECF1 gammaY205C/cQ42C and in ECF1F0 isolated from the double mutant of the same composition. The covalent linkage of the gamma to a c subunit had little effect on ATPase activity. However, ATP hydrolysis-linked proton translocation was lost, by modification of both gamma Cys-205 and c Cys-42 by bulky reagents such as 5,5'-dithio-bis (2-nitro-benzoic acid) or benzophenone-4-maleimide. In both ECF1 and ECF1F0 containing a Cys at gamma 205 and a Cys in the epsilon subunit (at position 38 or 43), cross-linking of the gamma to the epsilon subunit was induced in high yield by Cu2+. No cross-linking was observed in hybrid enzymes in which the Cys was at position 10, 65, or 108 of the epsilon subunit. Cross-linking of gamma to epsilon had only a minimal effect on ATP hydrolysis. The reactivity of the Cys at gamma 205 showed a nucleotide dependence of reactivity to maleimides in both ECF1 and ECF1F0, which was lost in ECF1 when the epsilon subunit was removed. Our results show that there is close interaction of the gamma and epsilon subunits for the full-length of the stalk region in ECF1F0. We argue that this interaction controls the coupling between nucleotide binding sites and the proton channel in ECF1F0.  相似文献   

12.
Previously we have shown that the Na+-translocating Escherichia coli (F1-delta)/Propionigenium modestum (Fo+delta) hybrid ATPase acquires a Na+-independent phenotype by the c subunit double mutation F84L, L87V that is reflected by Na+-independent growth of the mutant strain MPC8487 on succinate [Kaim, G., and Dimroth, P. (1995) J. Mol. Biol. 253, 726-738]. Here we describe a new class of mutants that were obtained by random mutagenesis and screening for Na+-independent growth on succinate. All six mutants of the new class contained four mutations in the a subunit (S89P, K220R, V264E, I278N). Results from site-specific mutagenesis revealed that the substitutions K220R, V264E, and I278N were sufficient to create the new phenotype. The resulting E. coli mutant strain MPA762 could only grow in the absence but not in the presence of Na+ ions on succinate minimal medium. This effect of Na+ ions on growth correlated with a Na+-specific inhibition of the mutant ATPase. The Ki for NaCl was 1. 5 mM at pH 6.5, similar to the Km for NaCl in activating the parent hybrid ATPase at this pH. On the other hand, activation by Li+ ions was retained in the new mutant ATPase. In the absence of Na+ or Li+, the mutant enzyme had the same pH optimum at pH 6.5 and twice the specific activity as the parent hybrid ATPase. In accordance with the kinetic data, the reconstituted mutant ATPase catalyzed H+ or Li+ transport but no Na+ transport. These results show for the first time that the coupling ion selectivity of F1Fo ATPases is determined by structural elements not only of the c subunit but also of the a subunit.  相似文献   

13.
The paramyxovirus fusion (F) protein mediates membrane fusion. The biologically active F protein consists of a membrane distal subunit, F2, and a membrane-anchored subunit, F1. We have identified a highly stable structure composed of peptides derived from the F1 heptad repeat A, which abuts the hydrophobic fusion peptide (peptide N-1), and the F1 heptad repeat B, located 270 residues downstream and adjacent to the transmembrane domain (peptides C-1 and C-2). In isolation, peptide N-1 is 47% alpha-helical and peptide C-1 and C-2 are unfolded. When mixed together, peptides N1 + C1 form a thermostable (Tm >90 degreesC), 82% alpha-helical, discrete trimer of heterodimers (mass 31,300 Mr) that is resistant to denaturation by 2% SDS at 40 degreesC. We suggest that this alpha-helical trimeric complex represents the core most stable form of the F protein that either is fusion competent or forms after fusion has occurred. Peptide C-1 is a potent inhibitor of both the lipid mixing and the aqueous content mixing fusion activity of the SV5 F protein. In contrast, peptides N-1 and N-2 inhibit cytoplasmic content mixing but not lipid mixing, leading to a stable hemifusion state. Thus, these peptides define functionally different steps in the fusion process. The parallels among both the fusion processes and the protein structures of paramyxovirus F proteins, HIV gp41, and influenza virus hemagglutinin are discussed, as the analogies are indicative of a conserved paradigm for fusion promotion among fusion proteins from widely disparate viruses.  相似文献   

14.
Three double-Cys mutant pairs--Ala273-->Cys/Met299-->Cys, Thr266-->Cys/Ile303-->Cys, and Thr266-->Cys/Ser306-->Cys--were constructed in a functional lac permease construct devoid of Cys residues, and the excimer fluorescence or electron paramagnetic resonance (EPR) was studied with pyrene- or spin-labeled derivatives, respectively. After reconstitution into proteoliposomes, excimer fluorescence is observed with mutant Ala273-->Cys/Met299-->Cys, but not with the single-Cys mutants nor with mutants Thr266-->Cys/Ile303-->Cys or Thr266-->Cys/Ser306-->Cys. Furthermore, spin-spin interaction is also observed with mutant Ala273-->Cys/Met299-->Cys, but only after the permease is reconstituted into proteoliposomes. The results provide independent support for the conclusions that helix VIII is close to helix IX and that the transmembrane helices of the permease are more loosely packed in a detergent micelle as opposed to a phospholipid bilayer.  相似文献   

15.
16.
Gq alpha is palmitoylated at residues Cys9 and Cys10. Removal of palmitate from purified Gq alpha with palmitoylthioesterase in vitro failed to alter interactions of Gq alpha with phospholipase C-beta 1, the G protein beta gamma subunit complex, or m1 muscarinic cholinergic receptors. Mutants C9A, C10A, C9A/C10A, C9S/C10S, and truncated Gq alpha (removal of residues 1-6) were synthesized in Sf9 cells and purified. Loss of both Cys residues or truncation prevented palmitoylation of Gq alpha. However, truncated Gq alpha and the single Cys mutants activated phospholipase C-beta 1 normally, while the double Cys mutants were poor activators. Loss of both Cys residues impaired but did not abolish interaction of Gq alpha with m1 receptors. These Cys residues are thus important regardless of their state of palmitoylation. When expressed in HEK-293 or Sf9 cells, all of the proteins studied associated entirely or predominantly with membranes, although a minor fraction of nonpalmitoylated Gq alpha proteins accumulated in the cytosol of HEK-293 cells. When subjected to TX-114 phase partitioning, a significant fraction of all of the proteins, including those with no palmitate, was found in the detergent-rich phase. Removal of residues 1-34 of Gq alpha caused a loss of surface hydrophobicity as evidenced by complete partitioning into the aqueous phase. The Cys residues at the amino terminus of Gq alpha are thus important for its interactions with effector and receptor, and the amino terminus conveys a hydrophobic character to the protein distinct from that contributed by palmitate.  相似文献   

17.
Four different somatic mutations (F631C, T632I, D633E, and D633Y) in the putative 6th transmembrane helix of the human thyrotropin receptor (TSHR) were recently described in hyperfunctioning thyroid adenomas [Porcellini et al. (1994) J. Clin. Endocrinol. Metab. 79, 657-661]. We transiently expressed these mutant receptors in Cos-7 cells and measured [125I]TSH binding, basal and TSH-stimulated cAMP production, and phosphatidylinositol hydrolysis. The concentration of receptors expressed at the cell surface was lower for the mutants than for the wild type (WT) TSHR. Compared to the WT, all four mutant receptors caused a marked increase in basal cAMP levels, but did not increase basal production of inositol phosphates. This suggests that autonomous thyroid function and adenoma formation may be related to constitutive activation of the cAMP pathway alone. A cluster of conserved residues at the base of the 6th transmembrane helix of the TSHR and other glycoprotein hormone receptors appears important for maintaining an inactive receptor conformation.  相似文献   

18.
Cysteine mutagenesis and site-directed spin labeling in the C-terminal region of rhodopsin have been used to probe the local structure and proximity of that region to the cytoplasmic loops. Each of the native amino acids in the sequence T335-T340 was replaced with Cys, one at a time. The sulfhydryl groups of all mutants reacted rapidly with the sulfhydryl reagent 4,4'-dithiodipyridine, which indicated a high degree of solvent accessibility. Furthermore, to probe the proximity relationships, a series of double Cys mutants was constructed. One Cys in all sets was at position 338 and the other was at a position in the sequence S240-V250 in the EF interhelical loop, at position 65 in the AB interhelical loop, or at position 140 in the CD interhelical loop. In the dark state, no significant disulfide formation was observed between C338 and C65 or C140 under the conditions used, whereas a relatively rapid disulfide formation was observed between C338 and C242 or C245. Spin labels in the double Cys mutants showed the strongest magnetic interactions between the nitroxides attached to C338 and C245 or C246. Light activation of the double mutant T242C/S338C resulted in slower disulfide formation, whereas interactions between nitroxides at C338 and C245 or C246 decreased. These results suggest the proximity of the C-terminal residue C338 to residues located on the outer face of a cytoplasmic helical extension of the F helix with an apparent increase of distance upon photoactivation.  相似文献   

19.
The delta and b subunits are both involved in binding the F1 to the F0 part in the Escherichia coli ATP synthase (ECF1F0). The interaction of the purified delta subunit and the isolated hydrophilic domain of the b subunit (bsol) has been studied here. Purified delta binds to bsol weakly in solution, as indicated by NMR studies and protease protection experiments. On F1, i.e. in the presence of ECF1-delta, delta, and bsol interact strongly, and a complex of ECF1.bsol can be isolated by native gel electrophoresis. Both delta subunit and bsol are protected from trypsin cleavage in this complex. In contrast, the delta subunit is rapidly degraded by the protease when bound to ECF1 when bsol is absent. The interaction of bsol with ECF1 involves the C-terminal domain of delta as delta(1-134) cannot replace intact delta in the binding experiments. As purified, bsol is a stable dimer with 80% alpha helix. A monomeric form of bsol can be obtained by introducing the mutation A128D (Howitt, S. M., Rodgers, A. J.,W., Jeffrey, P. D., and Cox, G. B. (1996) J. Biol. Chem. 271, 7038-7042). Monomeric bsol has less alpha helix, i.e. only 58%, is much more sensitive to trypsin cleavage than dimer, and unfolds at much lower temperatures than the dimer in circular dichroism melting studies, indicating a less stable structure. The bsol dimer, but not monomer, binds to delta in ECF1. To examine whether subunit b is a monomor or dimer in intact ECF1F0, CuCl2 was used to induce cross-link formation in the mutants bS60C, bQ104C, bA128C, bG131C, and bS146C. With the exception of bS60C, CuCl2 treatment resulted in formation of b subunit dimers in all mutants. Cross-linking yield was independent of nucleotide conditions and did not affect ATPase activity. These results show the b subunit to be dimeric for a large portion of the C terminus, with residues 124-131 likely forming a pair of parallel alpha helices.  相似文献   

20.
The cDNAs HUP1 and HUP2 of Chlorella kessleri code for monosaccharide/H+ symporters that can be functionally expressed in Schizosaccharomyces pombe. By random mutagenesis three HUP1 mutants with an increased Km value for D-glucose were isolated. The 40-fold increase in Km of the first mutant is due to the amino acid exchange N436I in putative transmembrane helix XI. Two substitutions were found in a second (G97C/I303N) and third mutant (G120D/F292L), which show a 270-fold and 50-fold increase in Km for D-glucose, respectively. An investigation of the individual mutations revealed that the substitutions I303N and F292L (both in helix VII) cause the Km shifts seen in the corresponding double mutants. These mutations together with those previously found support the hypothesis that helices V, VII, and XI participate in the transmembrane sugar pathway. Whereas for most mutants obtained so far the Km change for D-glucose is paralleled by a corresponding change for other hexoses tested, the exchange D44E exclusively alters the Km for D-glucose. Moreover the pH profile of this mutant is shifted by more than 2 pH units to alkaline values, indicating that the activity of the transporter may require deprotonation of the corresponding carboxyl group. Chimeric transporters were constructed to study the 100-fold lower affinity for D-galactose of the HUP1 symporter as compared with that of the HUP2 protein. A crucial determinant for the differential D-galactose recognition was shown to be associated with the first external loop. The effect could be pinpointed to a single amino acid change: replacement of Asn-45 of HUP1 with isoleucine, the corresponding amino acid of HUP2, yields a transporter with a 20 times higher affinity for D-galactose. The reverse substitution (I47N) decreases the affinity of HUP2 for D-galactose 20-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号