共查询到20条相似文献,搜索用时 15 毫秒
1.
Grafts of fetal dentate gyrus (DG) and CA1 hippocampal subfield tissue were extruded into the dentate gyri of adult male Sprague-Dawley rats, 7-10 days after lesioning the granule cells with colchicine (0.06 microliter of 7 mg/ml solution at each of 5 sites/hippocampus). Graft area-host and host-graft area connectivities were investigated 4-6 months post-transplantation by recoding extracellular evoked response in hippocampal slice preparations. Following stimulation of the host mid-molecular layer, evoked field potential responses, showing considerable variation, were recorded in both types of graft. Evoked responses in the lesioned DG without grafts were recorded in very few slices. Stimulation of the area of DG tissue grafts occasionally evoked responses in the host CA3/CA4 and there was no evidence for CA1 graft area-CA3/CA4 connectivity; stimulation of DG and CA1 graft areas occasionally evoked responses in the host CA1. Responses in the area of both DG and CA1 grafts supported short-term potentiation following stimulation of the host mid-molecular layer but only DG graft areas supported long-term potentiation of the population spike amplitude. In the area of both types of transplant a tonic bicuculline-sensitive inhibition was present and paired-pulse stimulation paradigms provided some evidence for inhibition. It is possible that responses recorded within the area of grafted tissue to stimulation of the host are attributable to host-graft connectivity and similarly, responses recorded in the host to stimulation of the area of the graft may be attributable to graft-host connectivity. Only DG graft areas received host inputs which were capable of sustaining a long-term potentiation and establishing efferent contacts with the host CA3/CA4 subfield, suggesting that these would be more likely than CA1 grafts to reinstate normal functional circuitry. 相似文献
2.
The F9 murine embryonal carcinoma cell line represents a well-established system for the study of retinoid signaling in vivo. We have investigated the functional specificity of different retinoid X receptor (RXR)-retinoic acid (RA) receptor (RAR) isotype pairs for the control of expression of endogenous RA-responsive genes, by using wild-type (WT), RXR alpha(-/-), RAR alpha(-/-), RAR gamma(-/-), RXR alpha(-/-)-RAR alpha(-/-), and RXR alpha(-/-)-RAR gamma(-/-) F9 cells, as well as panRXR and RAR isotype (alpha, beta, and gamma)-selective retinoids. We show that in these cells the control of expression of different sets of RA-responsive genes is preferentially mediated by distinct RXR-RAR isotype combinations. Our data support the conclusion that RXR-RAR heterodimers are the functional units transducing the retinoid signal and indicate in addition that these heterodimers exert both specific and redundant functions on the expression of particular sets of RA-responsive genes. We also show that the presence of a given receptor isotype can hinder the activity of another isotype and therefore that functional redundancy between retinoid receptor isotypes can be artifactually generated by gene knockouts. 相似文献
3.
Hippocampal pyramidal neurons often fire in bursts of action potentials with short interspike intervals (2-10 msec). These high-frequency bursts may play a critical role in the functional behavior of hippocampal neurons, but synaptic plasticity at such short times has not been carefully studied. To study synaptic modulation at very short time intervals, we applied pairs of stimuli with interpulse intervals ranging from 7 to 50 msec to CA1 synapses isolated by the method of minimal stimulation in hippocampal slices. We have identified three components of short-term paired-pulse modulation, including (i) a form of synaptic depression manifested after a prior exocytotic event, (ii) a form of synaptic depression that does not depend on a prior exocytotic event and that we postulate is based on inactivation of presynaptic N-type Ca2+ channels, and (iii) a dependence of paired-pulse facilitation on the exocytotic history of the synapse. 相似文献
4.
Effects of interleukin-1beta (bath-applied; 500 pM) on rat hippocampal CA3 pyramidal and dentate granule cells were studied using intracellular microelectrode recording in vitro. In both cell types membrane input resistance, resting membrane potential and action potential amplitude remained stable throughout. No change was seen in postsynaptic potentials in granule cells. After blocking excitatory synaptic transmission in CA3 pyramids interleukin-1beta was found to consistently decrease synaptic inhibition by about 30%. 相似文献
5.
Miniature, gamma-aminobutyric acid A receptor mediated inhibitory postsynaptic currents (mIPSCs) were recorded from CA3 pyramidal cells in hippocampal slice cultures using whole-cell techniques in the presence of tetrodotoxin. The kinetics and amplitudes of the mIPSCs were analyzed with the aim of determining whether subclasses of events arising from distinct populations of presynaptic interneurons could be distinguished. Histograms of mIPSC amplitude, rise time constant, and decay time constant were all positively skewed, but discrete subsets of events could not be distinguished. The positive skew did not appear to result from electrotonic filtering of distal synaptic currents because there was no correlation among mIPSC amplitudes and the kinetic parameters. Analysis of the intervals between mIPSCs indicated that each event occurred independently. The analysis of spontaneous mIPSCs does not provide evidence of the innervation of pyramidal cells by heterogeneous interneurons. 相似文献
6.
W Samuel E Masliah DE Brush M Garcia-Munoz P Patino SJ Young PM Groves 《Canadian Metallurgical Quarterly》1997,68(2):103-116
The aim of the present experimental investigation was to study the morphological and dimensional changes of bone, augmented at titanium implants by a membrane technique, taking place after membrane removal. In 12 rabbits, screw-shaped titanium implants were inserted in the tibial metaphyses in such a way that 5 threads became uncovered with bone. Surgery was performed on 2 occasions in order to retrieve specimens with different follow-up times. An e-PTFE barrier and a titanium device were used to provide space for bone formation. In 1 tibia of each rabbit, the membranes and spacers were removed after 8 weeks of healing, and the implants followed for 16 more weeks. Impressions were taken at day 0 and after 8 and 24 weeks of healing and plaster models were produced. In the contralateral tibiae, implants were inserted either 16 or 8 weeks prior to sacrifice. Measurements were made on the plaster models in 3 dimensions at 35 points around each implant in a coordinate measuring machine. Specimens taken 8, 16 and 24 weeks after insertion were analysed by means of light microscopical morphometry. The coordinate measurements showed that, in mean, 1.92 mm of bone had been formed during the first 8 weeks. A statistically significant loss of the height of the newly formed bone (0.70 mm) and thereby reduction of bone volume was found 24 weeks postoperatively. The volume decrease of the newly formed bone was more pronounced beside the implants than over the implant body. The histology showed that woven bone had been formed at the implants after 8 weeks. Further bone formation and remodelling and a net increase of mineralized bone were seen. The degree of bone-implant contact and bone area in the threads increased with time. The present study showed that coordinate measurements on plaster models, obtained from the experimental areas, in combination with histology, form a useful technique to study long-term changes of augmented bone. It was found that bone formed by a barrier membrane technique, decreased in volume during a 16-week follow-up period after barrier removal. Less dimensional changes were observed for the bone formed over the implant body, indicating that a solid surface may have a stabilizing effect on the augmented bone. 相似文献
7.
These studies demonstrate that murine hippocampal slice cultures possess neural-immune elements that show responses parallel to comparable in vivo models of neural-immune activation. Using immunocytochemical techniques, this study characterized the phenotypes of specific glial elements and the expression of the cytokine, interleukin-1 (IL-1 beta), in the hippocampal dentate gyrus over a period of 10 days in vitro (DIV). Preparation of organotypic slice cultures of neonatal mouse hippocampus produced cellular damage including axotomy of afferent fibers within the molecular layer of the dentate gyrus. This form of lesion-induced injury caused activation of neural-immune elements in the slice cultures. Staining with the microglial specific biotinylated Griffonia simplicifolia B4-isolectin revealed reactive microglia were most prevalent at 2 DIV and decreased in number from 4 to 10 DIV, whereas the initial population of resting microglia at 2 DIV increased approximately four-fold from 4 to 10 DIV. The presence of a round IL-1 beta-like immunophenotype closely paralleled the temporal and spatial distribution of the reactive form of microglia observed in the dentate gyrus. In addition, between 4 and 10 DIV, some IL-1 beta-like immunoreactive cells exhibited a stellate-like morphology with numerous branching processes, similar to resting microglia. At 2 DIV astrocytes showed minimal labeling with antibodies directed against glial fibrillary acidic protein (GFAP), while from 4 to 10 DIV, a dramatic hypertrophic astrocytic response occurred, resulting in a gliotic scar forming over the entire dentate gyrus. We conclude that neural-immune activation in the hippocampal organotypic slice culture preparation closely parallels similar responses observed in vivo and thus slice cultures represent an excellent model for further studies of neural-immune interactions resulting from lesion-induced injury in the central nervous system. 相似文献
8.
In the health management of bone, of most importance is how to spend the period until peak bone mass, that is appropriate self management for bone health. Therefore, we evaluated the effects of physical characteristics and dietary habits on the bone mineral density (BMD) of the second metacarpal bone (sigma GS/D: BMD) by the digital image processing method (DIP) in 197 healthy adolescent girls (Japanese students at a junior high school, aged 12-15 y), an important period of physical and bone growth. Concerning the physical characteristics of the subjects according to age group, body height in each age group was higher than the standard values for Japanese according to age, but body weights in the 14-year-old and 15-year-old groups were significantly lower than the standard values for Japanese. Compared with the standard BMD values for Japanese according to age, BMD in the subjects was high in the 12-year-old, 13-year-old and 14-year-old groups but low in the 15-year-old group (-7.3%). Concerning the nutritional state, energy, calcium (Ca), and iron intakes were insufficient in every age group. BMD relative to the standard BMD value for Japanese (standard value was regarded as 0%) was evaluated according to the ingestion frequency of Ca-rich foods. The relative BMD value (%) increased with the ingestion frequency of Ca-rich foods. These results suggest that maintenance of an appropriate physique and adequate intake of nutrients such as Ca are important for bone growth during adolescence. Active promotion of educational guidance mainly on the effects of diet on bone health in adolescents in necessary. 相似文献
9.
In experiments with unanaesthetized rabbits the influences of electric stimulation of the dentate fascia (DF) on the extracellularly recorded spontaneous and evoked activity of the CA3 neurones were investigated. Stimulation of a fixed locus in the DF during recording in the CA3 by a microelectrode, shifted along the longitudinal axis of the hippocampus, supported the notion of the topical, "segmental" organization of connections between the DF and CA3. A relatively narrow "active zone" (approximately 700 nm) appeared in the CA3 during the threshold DF stimulation: it was bordered by zones with predominantly inhibitory responses to stimulation. The CA3 neurones in the "active zone" rapidly lost their reactivity to sensory stimuli. In the "inhibitory" and "zero" zones the normal level of reactivity to sensory stimuli was preserved. 相似文献
10.
Associative long-term potentiation (LTP) and depression of compound and unitary CA3-CA excitatory postsynaptic potentials (EPSPs) were investigated in rat hippocampal slice cultures. The induction of LTP with synchronous pairing of synaptic activation and postsynaptic depolarization resulted in an increase in the amplitude of EPSPs to the same absolute level, regardless of whether the input was naive or had been previously depressed by asynchronous pairing of pre- and postsynaptic activity. Saturated LTP of compound and unitary EPSPs was reversed by asynchronous pairing and could be reinduced by synchronous pairing. The likelihood that an action potential in a presynaptic CA3 cell failed to trigger an unitary EPSP in a postsynaptic CA1 cell decreased after induction of associative potentiation and increased after induction of associative depotentiation. These changes in the rate of transmission failures were accompanied by large changes in the amplitude of nonfailure EPSPs. We conclude that the same CA3-CA1 synapses can alternatively undergo associative potentiation and depression, perhaps through opposite changes in a single expression mechanism. 相似文献
11.
Thirty-six consecutive patients with 37 complete tears of the ulnar collateral ligament of the thumb metacarpophalangeal (MP) joint were treated with primary repair using a miniature intraosseous suture anchor. Thirty patients were evaluated by clinical examination or by questionnaire at an average of 11 months after repair. Loss of interphalangeal joint motion averaged 15 degrees on the involved side versus the other side, while loss of MP joint motion averaged 10 degrees. There was no significant difference on stress testing measurements between repaired and nonrepaired thumbs. There were no instances of nerve injury, infection, device failure, or reoperation. The authors concluded that this is a safe and effective method for repair of complete tears of the ulnar collateral ligament of the thumb MP joint. 相似文献
12.
HE Scharfman 《Canadian Metallurgical Quarterly》1994,72(5):2167-2180
1. Simultaneous intracellular recordings of area CA3 pyramidal cells and dentate hilar "mossy" cells were made in rat hippocampal slices to test the hypothesis that area CA3 pyramidal cells excite mossy cells monosynaptically. Mossy cells and pyramidal cells were differentiated by location and electrophysiological characteristics. When cells were impaled near the border of area CA3 and the hilus, their identity was confirmed morphologically after injection of the marker Neurobiotin. 2. Evidence for monosynaptic excitation of a mossy cell by a pyramidal cell was obtained in 7 of 481 (1.4%) paired recordings. In these cases, a pyramidal cell action potential was followed immediately by a 0.40 to 6.75 (mean, 2.26) mV depolarization in the simultaneously recorded mossy cell (mossy cell membrane potentials, -60 to -70 mV). Given that pyramidal cells used an excitatory amino acid as a neurotransmitter (Cotman and Nadler 1987; Ottersen and Storm-Mathisen 1987) and recordings were made in the presence of the GABAA receptor antagonist bicuculline (25 microM), it is likely that the depolarizations were unitary excitatory postsynaptic potentials (EPSPs). 3. Unitary EPSPs of mossy cells were prone to apparent "failure." The probability of failure was extremely high (up to 0.72; mean = 0.48) if the effects of all presynaptic action potentials were examined, including action potentials triggered inadvertently during other spontaneous EPSPs of the mossy cell. Probability of failure was relatively low (as low as 0; mean = 0.24) if action potentials that occurred during spontaneous activity of the mossy cell were excluded. These data suggest that unitary EPSPs produced by pyramidal cells are strongly affected by concurrent synaptic inputs to the mossy cell. 4. Unitary EPSPs were not clearly affected by manipulation of the mossy cell's membrane potential. This is consistent with the recent report that area CA3 pyramidal cells innervate distal dendrites of mossy cells (Kunkel et al. 1993). Such a distal location also may contribute to the high incidence of apparent failures. 5. Characteristics of unitary EPSPs generated by pyramidal cells were compared with the properties of the unitary EPSPs produced by granule cells. In two slices, pyramidal cell and granule cell inputs to the same mossy cell were compared. In other slices, inputs to different mossy cells were compared. In all experiments, unitary EPSPs produced by granule cells were larger in amplitude but similar in time course to unitary EPSPs produced by pyramidal cells. Probability of failure was lower and paired-pulse facilitation more common among EPSPs triggered by granule cells.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
13.
Evoked, extracellularly recorded field potentials and whole-cell current-clamp recordings were used to assay the effects of variations in dissection method and incubation temperature on the electrophysiology of CA1 neurons in hippocampal slices. Slices were cut with either a vibratome or a tissue chopper, and incubated at 28-30 degrees C, room temperature (19-21 degrees C), or in cool solution (13-15 degrees C) which was allowed to passively warm to room temperature while the slices were incubating ('cold-shock', CS). Although no effects of dissection method were observed, it was found that incubation temperature had profound effects on synaptically, but not non-synaptically evoked field potentials. Cold-shocked slices, cut with either a vibratome or a tissue chopper, exhibited epileptiform and spontaneously potentiating orthodromic field potentials. Slices incubated at warmer temperatures demonstrated responses that were larger in amplitude, more stable and much less epileptiform. In response to orthodromic stimulation, CS neurons fired more action potentials than did neurons in slices incubated at room temperature. Further, CS neurons generated smaller inhibitory postsynaptic potentials. Field potential changes resulting from graded hypoxia were not significantly affected by the temperature at which the slices were incubated. These data suggest that the electrophysiology of the hippocampal slice can be altered by the methods used to prepare the tissue. This finding may account for some of the discrepancies that exist between laboratories, and serves to underscore the importance of accurately reporting detailed protocols. Further, CS hippocampal tissue may represent a novel in vitro model of epileptiform activity. 相似文献
14.
Goodrich-Hunsaker Naomi J.; Hunsaker Michael R.; Kesner Raymond P. 《Canadian Metallurgical Quarterly》2008,122(1):16
Several studies have demonstrated the significance of a spatial cognitive map and its role for guided and accurate navigation through the environment. Learning and recalling spatial knowledge depends upon proper topological and metric spatial information processing. The present objectives are to better characterize the role of the hippocampus for processing topological and metric spatial information. Rats with dorsal hippocampal subregional lesions (dDG, dCA3, dCA1) were tested on a previously established metric task and topological task. The results of the present study suggest that dCA1, but not dDG or dCA3, mediates topological memory. Furthermore, dDG, dCA3, and dCA1 mediate metric memory. Dorsal DG is required for spatial information processing via pattern separation or orthogonalization of sensory inputs to generate metric representations. Dorsal CA3 and dCA1 then receive these metric representations transmitted from dDG along the trisynaptic loop. The present data add to a growing body of literature suggesting a diversity of function among the hippocampal subregions. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
15.
1. A gradual and prolonged decrease of the response, termed here "depression," evoked by repeated activation with transmembrane current stimuli was analyzed in rat CA1 hippocampal pyramidal cells under single-electrode current clamp by the use of the in vitro slice technique. 2. Depression was induced by 2-s duration 0.3- to 0.7-nA current pulses presented as a sequence of 12 stimuli at 3- to 60-s intervals. Sinusoidal currents (0.5-1.0 nA) at 5-Hz or 200-ms pulses repeated at 0.3-0.5/s, which may be more natural stimulations, also induced depression. 3. Depression outlasted stimulation up to 170 s in all cells tested. The initial high rate spike burst changed little (< 20%), whereas the lower rate adapted response decreased markedly (> 40%). Thus neurons increased their rate of adaptation. The afterhyperpolarizations following pulse-evoked responses increased in duration and amplitude with depression. There were input resistance (Rin) reductions at depolarized membrane potentials and during pulses. However, Rin reductions were considerably smaller or altogether absent late during interpulse intervals. Sub-threshold current stimuli were ineffective, indicating that spike activity was necessary to elicit depression. 4. Depression was 1) insensitive to the toxin omega-Agatoxin-IVA (omega-Aga-IVA; 0.5 microM), which blocked synaptic transmission, revealing a key involvement of intrinsic properties and little if any synaptic participation; 2) insensitive to 4-aminopyrydine (2.00-4.00 mM), which greatly enhanced excitatory and inhibitory synaptic efficacy, again suggesting little synaptic involvement and a principal postsynaptic participation, and no participation of the K(+)-mediated currents IA and ID; 3) abolished by carbamalcholine (5.0-20.0 microM)- an effect blocked by atropine (1.0-10.0 microM)- and reduced by Ca(2+)-free solutions, and by intracellular injection of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that Ca(2+)-dependent K(+)-mediated currents are key factors, with a less important participation of the K(+)-mediated IM current. 5. We conclude that depression was due to activity-dependent modifications in intrinsic properties, with little if any synaptic participation. Depression may be functionally significant because it was induced by potentially natural stimulations. A model is proposed that accounts for the main traits of depression. In the model, depression was induced by a gradual decline of the speed at which Ca2+ was buffered intracellularly; an increase in the IK(Ca)S activation rate constant also simulated depression. 相似文献
16.
17.
Long-term potentiation (LTP) of the Schaffer collateral/commissural inputs to CA1 in the hippocampus was shown to consist of N-methyl-D-aspartate receptor (NMDAR) and voltage-dependent calcium channel (VDCC) dependent forms. In this study, the relative contributions of these two forms of LTP in in vitro hippocampal slices from young (2 mo) and old (24 mo) Fischer 344 rats were examined. Excitatory postsynaptic potentials (EPSP) were recorded extracellularly from stratum radiatum before and after a tetanic stimulus consisting of four 200-Hz, 0.5-s trains given 5 s apart. Under control conditions, a compound LTP consisting of both forms was induced and was similar, in both time course and magnitude, in young and old animals. NMDAR-dependent LTP (nmdaLTP), isolated by the application of 10 microM nifedipine (a voltage-dependent calcium channel blocker), was significantly reduced in magnitude in aged animals. The VDCC dependent form (vdccLTP), isolated by the application of 50 microM D,L-2-amino-5-phosphonvalerate (APV), was significantly larger in aged animals. Although both LTP forms reached stable values 40-60 min posttetanus in young animals, in aged animals vdccLTP increased and nmdaLTP decreased during this time. In both young and old animals, the sum of the two isolated LTP forms approximated the magnitude of the compound LTP, and application of APV and nifedipine or genestein (a tyrosine kinase inhibitor) together blocked potentiation. These results suggest that aging causes a shift in synaptic plasticity from NMDAR-dependent mechanisms to VDCC-dependent mechanisms. The data are consistent with previous findings of increased L-type calcium current and decreased NMDAR number in aged CA1 cells and may help explain age-related deficits in learning and memory. 相似文献
18.
Populations of 10-39 CA1 pyramidal cells were recorded from four rats foraging for food reward in an environment consisting of two nearly identical boxes connected by a corridor. For each rat, a higher-than-chance fraction of cells had similarly shaped spatial firing fields in both boxes, but other cells had completely different fields in the two boxes. The level of correlation of fields in the two boxes differed greatly across rats and, for three of the four rats, across recording sessions. Thus, the factors controlling the level of correlation are likely to be subtle. Two control manipulations were performed. First, the two boxes were physically interchanged. In no case did firing fields move along with the boxes. Second, on the final session of recording, the rat was started in the south box, after having been started in the north box for every previous session. For at least two of the four rats, the north fields from the previous session were instantiated in the south during the first visit of the second session, but thereafter reverted. Thus neither differences between the physical boxes nor sensory input from outside the apparatus could account for the differences in firing fields: most likely they were caused by a combination of learned expectations and a neural mechanism for remembering movements. These findings could be explained either by hypothesizing a more sophisticated attractor-map architecture than has been proposed previously, or by hypothesizing that the hippocampus conjunctively encodes both map information and some other type of information. 相似文献
19.
F Doussau A Clabecq JP Henry F Darchen B Poulain 《Canadian Metallurgical Quarterly》1998,18(9):3147-3157
The Rab3 proteins are monomeric GTP-binding proteins associated with secretory vesicles. In their active GTP-bound state, Rab3 proteins are involved in the regulation of hormone secretion and neurotransmitter release. This action is thought to involve specific effectors, including two Ca2+-binding proteins, Rabphilin and Rim. Rab3 acts late in the exocytotic process, in a cell domain in which the intracellular Ca2+ concentration is susceptible to rapid changes. Therefore, we examined the possible Ca2+-dependency of the regulatory action of GTP-bound Rab3 and wild-type Rab3 on neuroexocytosis at identified cholinergic synapses in Aplysia californica. The effects of recombinant GTPase-deficient Aplysia-Rab3 (apRab3-Q80L) or wild-type apRab3 were studied on evoked acetylcholine release. Intraneuronal application of apRab3-Q80L in identified neurons of the buccal ganglion of Aplysia led to inhibition of neurotransmission; wild-type apRab3 was less effective. Intracellular chelation of Ca2+ ions by EGTA greatly potentiated the inhibitory action of apRab3-Q80L. Train and paired-pulse facilitation, two Ca2+-dependent forms of short-term plasticity induced by a rise in intraterminal Ca2+ concentration, were increased after injection of apRab3-Q80L. This result suggests that the inhibition exerted by GTP-bound Rab3 on neuroexocytosis is reduced during transient augmentations of intracellular Ca2+ concentration. Therefore, a Ca2+-dependent modulation of GTP-bound Rab3 function may contribute to short-term plasticity. 相似文献
20.
Somatostatin (SST) is a neuropeptide involved in several central processes. In hippocampus, SST hyperpolarizes CA1 pyramidal neurons and augments the K+ M current (IM). However, the limited involvement of IM at resting potential in these cells suggests that the peptide also may modulate another channel to hyperpolarize hippocampal pyramidal neurons (HPNs). We studied the effect of SST on noninactivating conductances of rat CA1 HPNs in a slice preparation. Using MK886, a specific inhibitor of the enzymatic pathway that leads to the augmentation of IM by SST, we have uncovered and characterized a second conductance activated by the peptide. SST did not affect IM when applied with MK886 or the amplitudes of the slow Ca2+-dependent K+ afterhyperpolarization-current and the cationic Q current but still caused an outward current, indicating that SST acts upon another conductance. In the presence of MK886, SST elicited an outward current that reversed around -100 mV and that displayed a linear current-voltage relationship. Reversal potentials obtained in different external K+ concentrations are consistent with a conductance carried solely by K+ ions. The slope of the current-voltage relationship increased proportionately with the extracellular K+ concentration and remained linear. This suggests that SST opens a voltage-insensitive leak current (IK(L)) in HPNs not an inwardly rectifying K+ current as reported in other neuron types. A low concentration of extracellular Ba2+ (150 M) only slightly decreased the SST-induced effect in a voltage-independent manner, whereas a high concentration of Ba2+ (2 mM) completely blocked it. Extracellular Cs+ (2 mM) did not affect the outward SST current but inhibited the inward component. We conclude that SST inhibits HPNs by activating two different K+ conductances: the voltage-insensitive IK(L) and the voltage-dependent IM. The hyperpolarizing effect of SST at resting membrane potential appears to be mainly carried by IK(L), whereas IM dominates at slightly depolarized potentials. 相似文献