首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
以Mn3O4为前驱体制备尖晶石型LiMn2O4及其性能   总被引:1,自引:0,他引:1  
采用改进的固相反应法合成了高性能的锂离子电池正极材料LiMn2O4。首先,以廉价的MnSO4为原料,通过水解氧化法制备纳米级Mn3O4前驱体;然后,将Mn3O4和Li2CO3混合均匀,在750℃固相反应20 h,得到尖晶石型LiMn2O4。用X射线衍射(XRD)和扫描电镜(SEM)对Mn3O4前驱体和LiMn2O4样品进行表征,用充放电测试和循环伏安技术对LiMn2O4样品进行电化学性能研究。结果表明:所制备的LiMn2O4具有完整的尖晶石型结构,且晶体粒子分布均匀。所制备的LiMn2O4材料在3.0~4.4 V之间,室温(25℃)下,在0.2C倍率下首次放电比容量为130.6 mA.h/g;在0.5C倍率下首次放电比容量为127.1 mA.h/g,30次循环后,容量仍有109.5 mA.h/g,且样品具有较好的高温性能。  相似文献   

2.
以V2O5、NH4H2PO4、Li2CO3和C6H8O7·H2O为原料,采用溶胶-凝胶法在600~800℃下合成了锂离子电池正极材料Li3V2(PO4)3/C,利用XRD和蓝电测试系统对材料进行表征,研究了合成温度对材料电化学性能的影响。结果表明:650℃下合成产物中开始出现Li3V2(PO4)3相,700、750和800℃下合成纯相的Li3V2(PO4)3正极材料;750℃合成的样品在放电电流密度为0.1C下首次放电容量为123.5mAh·g-1,并且随电流密度增大到10C时也有较好的循环稳定性。  相似文献   

3.
锂离子电池边角料中直接回收合成LiCoO2的性能   总被引:1,自引:1,他引:0  
研究了一种从锂离子蓄电池正极片的边角料中直接回收钴酸锂的新工艺.先用二甲基乙酰胺(DMAC)浸泡正极片,将LiCoO2从铝箔上剥离,再在高温下除去正极中的聚偏氟乙烯(PVDF)和碳粉等杂质.然后添加不同的锂盐(Li2CO3、LiOH·H2O和 LiAc·2H2O)调节回收粉末中的Li与Co的量比为1.00,再在850 ℃下焙烧12 h得到最终产品.用扫描电子显微镜(SEM)和X射线衍射(XRD)分析技术对得到的样品进行微观形貌与晶相结构的研究.研究结果表明,添加Li2CO3合成的LiCoO2层状结构发育最为完善,其首次放电容量和循环性能也最好;在3.0~4.3 V进行充放电,首次放电容量达到160 mA·h/g,经30次循环以后,仍有150 mA·h/g.  相似文献   

4.
在采用低温共沉淀-水热-煅烧法合成锂离子电池Fe-Ni-Mn体系正极材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的基础上,对合成的材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6进行V2O5的包覆改性研究,以提高材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的首次放电比容量和循环性能。用XRD、SEM、TEM、ICP光谱和恒流充放电测试研究包覆材料的结构和电化学性能。结果表明,V2O5包覆并没有改变材料的晶体结构,只存在于材料的表面,与未包覆的材料相比,V2O5包覆后的材料具有更好的首次放电容量和容量保持率。50周循环后,添加质量分数3%V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的放电比容量可以维持在200.3 mAh/g,大于未添加V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的194.0 mAh/g。CV测试表明,包覆层的存在有效抑制了材料层状结构的转变及电极与电解液的负反应。  相似文献   

5.
在采用低温共沉淀-水热-煅烧法合成锂离子电池Fe-Ni-Mn体系正极材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的基础上,对合成的材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6进行V2O5的包覆改性研究,以提高材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的首次放电比容量和循环性能。用XRD、SEM、TEM、ICP光谱和恒流充放电测试研究包覆材料的结构和电化学性能。结果表明,V2O5包覆并没有改变材料的晶体结构,只存在于材料的表面,与未包覆的材料相比,V2O5包覆后的材料具有更好的首次放电容量和容量保持率。50周循环后,添加质量分数3%V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的放电比容量可以维持在200.3 mAh/g,大于未添加V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的194.0 mAh/g。CV测试表明,包覆层的存在有效抑制了材料层状结构的转变及电极与电解液的负反应。  相似文献   

6.
采用X射线衍射(XRD)、透射电镜(TEM)和电化学方法,研究Ni2+掺杂对正极材料Li3V2(PO4)3的结构、形貌和电化学性能的影响。结果表明:掺杂适量的Ni2+不会改变Li3V2(PO4)3的单斜晶系结构,但可提高材料的电导率,抑制电池在充放电过程的极化。在室温下,Li3(Ni0.05V0.95)2(PO4)3以0.1C倍率放电的初始比容量为115mA.h/g,放电倍率从0.1C增加到0.4C循环60次后,比容量衰减率仅为2.7%,而未掺杂原样Li3V2(PO4)3的初始比容量为129 mA.h/g,60次循环后比容量衰减率约为30.3%;当放电倍率增至1C时,80次循环后,Li3(Ni0.05V0.95)2(PO4)3比容量为99.8 mA.h/g,而原样的比容量为84.1 mA.h/g;当放电倍率增至5C时,循环120次后,Li3(Ni0.05V0.95)2(PO4)3比容量为67.7 mA.h/g,而原样的比容量降为0。循环伏安和交流阻抗测试表明,Li3(Ni0.05V0.95)2(PO4)3的可逆性明显优于Li3V2(PO4)3的可逆性。  相似文献   

7.
以化学共沉淀法制备的球形Ni0.25Mn0.75CO3为前驱体合成高电压正极材料LiNi0.5Mn1.5O4,探讨用前驱体与Li2CO3直接反应和用前驱体分解后的氧化物与Li2CO3反应两种工艺路线对LiNi0.5Mn1.5O4形貌和电化学性能的影响。用扫描电镜(SEM)和X射线衍射(XRD)对Ni0.25Mn0.75CO3前驱体和LiNi0.5Mn1.5O4样品进行表征,用充放电测试和循环伏安法对LiNi0.5Mn1.5O4样品进行电化学性能研究。结果表明:两种方法合成的LiNi0.5Mn1.5O4均具有尖晶石型结构。但以前驱体Ni0.25Mn0.75CO3直接与Li2CO3反应合成的LiNi0.5Mn1.5O4的一次粒子颗粒较大,形貌较差,性能也较差;而以前驱体分解后的氧化物与Li2CO3反应合成的LiNi0.5Mn1.5O4的形貌及性能均较好。在3.0~4.9 V的电压范围内,1C倍率下电池的放电比容量达到136.3 mA.h/g,循环100次仍有126.5 mA.h/g,且材料具有较好的倍率性能;5C倍率下的首次放电比容量高达120.7 mA.h/g。  相似文献   

8.
以Li2CO3、FeSO4·7H2O、(NH4)2HPO4和Na2EDTA为原料,掺杂碳纳米管采用水热法合成了锂离子电池正极材料LiFePO4.研究了表面活性剂和碳纳米管对产物形貌和电化学性能的影响.结果表明:LiFePO4/MWCNTs样品属于橄榄石结构,在0.1C、3.0~4.3V条件下的首次放电比容量为145 mAh·g--,第20次循环的比容量为144.3 mAh·g-1.  相似文献   

9.
以V2O5·nH2O、LiOH·H2O、NH4H2PO4和蔗糖为原料,采用研磨溶胶凝胶技术制备了无定形Li3V2(PO4)3前驱体,再经过焙烧获得具有单斜结构的介孔Li3V2(PO4)3正极材料,并用XRD、SEM、TEM、比表面积和电化学性能测试来表征材料的性能。研究表明,在700°C下焙烧的样品具有良好的介孔结构、最大的比表面积(188cm2/g)和最小的孔径(9.3nm)。在0.2C倍率下,该介孔样品的首次放电容量达155.9mA·h/g,经过50次循环后其容量仍然可达154mA·h/g,表现出非常稳定的放电性能。  相似文献   

10.
采用LiAc·2H2O作为锂源,利用熔盐碳热还原方法在较低的烧结温度和较短的烧结时间内(650℃,4h)合成纯相LiFePO4/C材料。扫描电镜照片显示这种方法合成的材料粒径大约为1μm,小于用Li2CO3作为锂源合成的材料。电化学测试表明,采用LiAc·2H2O作为锂源合成的材料表现出了高的放电容量和良好的倍率循环性能:在0.5C和5C倍率下,其首次放电容量分别为148mA.h/g和115mA.h/g;50次循环后,容量保持率分别为93%和89%。  相似文献   

11.
针对废旧锂离子电池数量不断增加的现状,对废旧LiCoO2电池的回收和再生流程进行探究。以废旧LiCoO2电池为原料,通过预处理,酸浸,共沉淀步骤,实现了LiNi0.8Co0.1Mn.1O2正极材料的再生。ICP-OES分析浸出液中的元素含量,SEM和XRD表征材料形貌和结构,扣式电池的电化学测试定量分析材料的电化学性能。研究表明,利用浸出液可以再生形貌和层状结构良好的正极材料,在0.2C,2.8~4.3V电压范围内进行充放电循环测试,首周放电比容量可达到210.8 mAh/g,经过50周充放电循环后的容量保持率为87%,表现出良好的循环稳定性,为废旧锂离子电池的再生提供支撑和发展方向。  相似文献   

12.
Carbon-coated Li3V2(PO4)3 cathode materials for lithium-ion batteries were prepared by a carbon-thermal reduction (CTR) method using sucrose as carbon source.The Li3V2(PO4)3/C composite cathode materials were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),and electrochemical measurement.The results show that the Li3V2(PO4)3 samples synthesized using sucrose as carbon source have the same monoclinic structure as the Li3V2(PO4)3 sample synthesized using acetylene black as carbon Source.SEM image exhibits that the particle size is about 1 μm together with homogenous distribution.Electrochemical test shows that the initial discharge capacity of Li3V2(PO4)3 powders is 122 mAh·g-1 at the rate of 0.2C,and the capacity retains 111 mAh·g-1 after 50 cycles.  相似文献   

13.
利用低共熔组成的0.38LiOH-0.62LiNO3混合锂盐体系,与高密度前驱体Ni0.8Co0.2-xAlx(OH)2(0≤x≤0.15)在低温下自混合,无需前期研磨和后续洗涤,直接制备出高密度Co-Al共掺杂的锂离子电池正极材料LiNi0.8Co0.2-xAlxO2(0≤x≤0.15)。X射线衍射分析结果表明,合成的LiNi0.8Co0.2-xAlxO2具有规整的层状α-NaFeO2结构。扫描电镜显示产物颗粒均匀,LiNi0.8Co0.15Al0.05O2的振实密度达2.97g·cm-3。电性能测试表明,在0.2C放电倍率和3.0~4.3V的电压范围内,LiNi0.8Co0.15Al0.05O2首次放电比容量达167.5mAh·g-1,且具有良好的循环性能。  相似文献   

14.
采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池性能测试系统研究了多元稀土掺杂锂锰氧正极材料的相结构、形貌,并对其活化性能、循环稳定性能进行了表征。结果表明:采用Pechini法合成多元稀土掺杂LiMn2O4样品时,只有将掺杂元素的含量严格控制在一定范围内,所合成的LiMn2O4、LiLa0.03Mn1.97O4、LiLa0.012Ce0.012Mn1.976O4、LiLa0.012Nd0.012Mn1.976O4、LiCe0.012Nd0.012Mn1.976O4样品才具有纯尖晶石型LiMn2O4结构。当稀土掺杂元素含量较高时,所合成的LiLa0.015Ce0.015Mn1.97O4、LiLa0.015Nd0.015Mn1.97O4、LiCe0.015Nd0.015Mn1.97O4样品由LiMn2O4相及微量杂质相CeO2、Nd2O3、CeO2+Nd2O3组成。所有样品呈规则的近球形或球形,其粒径范围为0.5~2.8μm。适量的稀土元素掺杂将使LiMn2O4材料的初始容量减小、充放电效率及循环稳定性能增加,LiCe0.012Nd0.012Mn1.976O4样品具有较好的综合电化学性能,其初始容量为123.5mAh/g,经30次循环充放电后的容量为113.2mAh/g,为相同条件下LiMn2O4样品放电容量的1.27倍。  相似文献   

15.
The effects of Al doping on the electrochemical properties of NaVPO4F as a cathode material for sodium-ion batteries were investigated. Al-doped NaV1-xAlxPO4F (x=0, 0.02) samples were prepared by a simple high temperature solid-state reaction involving VPO4 and NaF for the application of cathode material of sodium-ion batteries. The crystal structure and morphology of the material were studied by Flourier-infrared spectrometry(FT-IR), X-ray diffractometry(XRD) and scanning electron microscopy(SEM). The results show that NaV1-xAlxPO4F (x=0, 0.02) has a typical monoclinic structure. The effects of Al doping on the performance of the cathode material were analyzed in terms of the crystal structure, charge-discharge curves and cycle performance. It is found that NaV0.98Al0.02PO4F shows an improved cathodic behavior and discharge capacity retention compared with the undoped samples in the voltage range of 3.0-4.5 V. The electrodes prepared from NaV0.98Al0.02PO4F deliver an initial discharge capacity of 80.4 mA.h/g and an initial coulombic efficiency of 89.2%, and the capacity retention is 85% after 30th cycle. Though the Al-doped samples have lower initial capacities, they show better cycle performance than Al-free samples.  相似文献   

16.
以有机-水为混合溶剂,采用溶胶-凝胶法制备锂离子电池正极材料Li3V2(PO4)3/C。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电以及循环伏安(CV)测试等方法,研究产物的结构形貌及电化学性能。结果表明:溶剂对材料的晶型结构没有影响,对颗粒的形貌影响较大;以1,2-丙二醇-水为溶剂的样品呈薄片状和针状;在3.0~4.5 V电压范围内,Li3V2(PO4)3/C的0.1C首次放电比容量为132.89 mA.h/g,10C首次放电比容量达125.42 mA.h/g,循环700周后容量保持率为95.79%,具有良好的倍率性能与循环性能;而在3.0~4.8 V电压范围内倍率性能较差。  相似文献   

17.
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/3O2 were 950°C for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.  相似文献   

18.
1 INTRODUCTIONDue to the high cost of LiCoO2,a commonlyused cathode material in commercial rechargeablelithium-ion batteries , much efforts have been madeto develop cheaper cathode materials than LiCoO2,Li Ni O2and Li MnO2have been studied extensivelyas possible alternatives to LiCoO2[1 4 ]. Stoichio-metric Li Ni O2is knownto be difficult to synthesizeandits multi-phase reaction during electrochemicalcyclingleads to structural degradation,andlayeredLi MnO2has a significant drawback…  相似文献   

19.
研究用LiCoO2-LiFePO4作正极的锂离子电池的电化学性能和安全性能。结果表明:电池在1、3和5C倍率的放电容量分别为347.7、327.2和322.5 mA.h,5C条件下的放电容量为1C放电容量的92.8%。在25℃、1C条件下循环150次的容量保持率为100%;在?10℃、1C条件下的放电容量为256.5 mA.h,是25℃、1C放电容量的74.8%。电池具有很好的耐过充性能,在3C、10 V条件下进行过充电,电池不漏液、起火或爆炸。短路时电池的表面温度低于LiCoO2电池的表面温度。  相似文献   

20.
MoO_3包覆对锂一次电池CuF_2正极材料性能的影响   总被引:1,自引:0,他引:1  
通过球磨CuF_2和MoO_3的混合物,制成CuF_2/MoO_3复合材料.通过X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等研究CuF_2/MoO_3复合材料的结构和电化学性能.结果表明:MoO_3晶粒均匀地附着在CuF_2的表面,形成均匀的导电网,从而使制备的CuF_2/MoO_3复合材料具有高导电性,可作为锂一次电池正极活性材料.以0.1C倍率放电,截止电压为1.5 V,CuF_2/MoO_3复合材料放电比容量高达483mA·h/g,放电电位平台为2.5 V,明显高于CuF_2正极材料的278 mA·h/g,接近其理论容量528 mA·h/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号