首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resource optimization is a major factor in the assessment of the effectiveness of renewable energy systems. Various methods have been utilized by different researchers in planning and sizing the grid-connected PV systems. This paper analyzes the optimal photovoltaic (PV) array and inverter sizes for a grid-connected PV system. Unmet load, excess electricity, fraction of renewable electricity, net present cost (NPC) and carbon dioxide (CO2) emissions percentage are considered in order to obtain optimal sizing of the grid-connected PV system. An optimum result, with unmet load and excess electricity of 0%, for serving electricity in Makkah, Saudi Arabia is achieved with the PV inverter size ratio of R = 1 with minimized CO2 emissions. However, inverter size can be downsized to 68% of the PV nominal power to reduce the inverter cost, and hence decrease the total NPC of the system.  相似文献   

2.
The impact of PV surface orientation and inclination on grid-connected photovoltaic system performance under maritime climates was investigated using validated TRNSYS simulations. Insolation, PV output, PV efficiency, inverter efficiency, system efficiency, performance ratio (PR) and PV savings were estimated annually, seasonally and on monthly bases for various surface inclinations and orientations. Incident insolation and PV output were maximum for a surface with inclination 30° facing due south and minimum for a vertical surface with orientation 90° east or west from south. The monthly optimum collection angle maximising incident insolation varied from 10° to 70°. For the particular location and system studied, the maximum annual PV efficiency, the inverter efficiency, the PR and the system efficiency were for a south-facing surface with an inclination of 20°. For a horizontal surface, the monthly variation of system parameters was significant over a year. For time-dependent tariff rates, the annual PV savings were higher for a system oriented with same orientation towards the west than east from south while for constants tariff rates, the PV savings was the same for east or west orientation from south.  相似文献   

3.
A method to characterise the current total harmonic distortion for single-phase inverters is proposed. This method is based on the performance of the inverters along two different types of days: clear sky and partially cloudy sky days. An expression to estimate the average value of the current total harmonic distortion for each type of day is proposed. The values obtained from these expressions pick up the behaviour of the inverters for the two most usual climatic conditions. Moreover, the values obtained can be used to compare the electricity supply quality of different inverters.  相似文献   

4.
Inverter sizing strategies for grid-connected photovoltaic (PV) systems often do not take into account site-dependent peculiarities of ambient temperature, inverter operating temperature and solar irradiation distribution characteristics. The operating temperature affects PV modules and inverters in different ways and PV systems will hardly ever have a DC output equal to or above their STC-rated nominal power. Inverters are usually sized with a nominal AC output power some 30% (sometimes even more) below the PV array nominal power. In this paper, we show that this practice might lead to considerable energy losses, especially in the case of PV technologies with high temperature coefficients of power operating at sites with cold climates and of PV technologies with low temperature coefficients of power operating at sites with warm climates and an energy distribution of sunlight shifted to higher irradiation levels. In energy markets where PV kW h’s are paid premium tariffs, like in Germany, energy yield optimization might result in a favorable payback of the extra capital invested in a larger inverter.This paper discusses how the time resolution of solar radiation data influences the correct sizing of PV plants.We demonstrate that using instant (10 s) irradiation values instead of average hourly irradiation values leads to considerable differences in optimum inverter sizing. When calculating inverter yearly efficiency values using both, hourly averages and 1-min averages, we can show that with increased time resolution of solar irradiation data there are higher calculated losses due to inverter undersizing. This reveals that hourly averages hide important irradiation peaks that need to be considered.We performed these calculations for data sets from pyranometer readings from Freiburg (48°N, Germany) and Florianopolis (27°S, Brazil) to further show the peculiarities of the site-dependent distribution of irradiation levels and its effects on inverter sizing.  相似文献   

5.
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P&O) algorithm dispositive.  相似文献   

6.
This paper presents a grid-connected photovoltaic (PV) power conversion system based on a single-phase multilevel inverter. The proposed system fundamentally consists of PV arrays and a single-phase multilevel inverter structure. First, configuration and structural parts of the PV assisted inverter system are introduced in detail. To produce reference output voltage waves, a simple switching strategy based on calculating switching angles is improved. By calculated switching angles, the reference signal is produced as a multilevel shaped output voltage wave. The control algorithm and operational principles of the proposed system are explained. Operating PV arrays in the same load condition is a considerable point; therefore a simulation study is performed to arrange the PV arrays. After determining the number and connection types of the PV arrays, the system is configured through the arrangement of the PV arrays. The validity of the proposed system is verified through simulations and experimental study. The results demonstrate that the system can achieve lower total harmonic distortion (THD) on the output voltage and load current, and it is capable of operating synchronous and transferring power values having different characteristic to the grid. Hence, it is suitable to use the proposed configuration as a PV power conversion system in various applications.  相似文献   

7.
并网光伏发电系统输出功率的波动性和随机性给并网后系统稳定性,光伏发电消纳以及光伏电站电能质量等方面带来了负面影响,制约了光伏发电的发展.针对这一问题,将超级电容器作为功率调节装置,控制光伏并网系统按指定值平滑,准确地输出功率,使光伏发电具有可调度性.在分析了超级电容特性,系统构成和双向DC/DC变换器状态空间平均小信号模型的基础上,提出功率,电流双闭环反馈滞环电流控制策略,控制超级电容器吸收或补充输出功率的波动成分.在PSCAD/EMTDC 电力系统仿真软件中构建仿真模型,对提出的系统和控制策略进行了仿真分析,良好的仿真结果验证了方法的可行性.  相似文献   

8.
研究一种单相光伏并网发电控制仿真系统。利用Matlab2008b/Simulink,采用boost电路和逆变电路两级式结构,其中采用电导增量法的最大功率跟踪功能在boost电路中实现,并网控制通过采集电网电压参数和逆变输出电流电压参数在逆变电路中通过PI调节实现。通过光伏阵列通用模型验证最大功率跟踪模块的正确性,通过并网实验验证并网跟踪性能。基本实现了光伏阵列最大功率点的快速、准确跟踪功能和逆变输出电流电压与电网电压的同频同相,保证了输出电流为正弦波形且纹波较少,能够快速跟踪电网电压的变化。证明此系统在实际中是可行的。  相似文献   

9.
10.
This paper provides a multi-faceted view on the characterization of the waveform distortion in grid-connected photovoltaic (PV) plants from experimental results. The focus is set on the characterization of the waveform distortion occurring under different operating conditions in field measurements and laboratory tests. The assessment is carried out by considering the system-based point of view, on the basis of the measurements gathered at the interface between the PV plant and the grid or the supply point in the laboratory. New methodological hints on the formulation of the experimental tests are provided. The results of the waveform distortion analysis for harmonic currents and voltages are compared to the requirements of present power quality standards, indicating that in practical cases the current distortion can be significantly higher than in normal test conditions. Furthermore, the key aspect concerning harmonic and interharmonic modelling of multiple grid-connected PV inverters is addressed. Experimental results on plant configurations with multiple PV inverters show that low-order harmonics sum up almost arithmetically, whereas the higher-order harmonics and the interharmonics sum up in an almost Euclidean way.  相似文献   

11.
This study investigated the pollutant emission reduction and demand-side management potential of 16 photovoltaic (PV) systems installed across the US during 1993 and 1994. The US Environmental Protection Agency (EPA) and 11 electric power companies sponsored the project. This article presents results of analyses of each PV system's ability to offset power plant emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), carbon dioxide (CO2) and particulates and to provide power during peak demand hours for the individual host buildings and peak load hours for the utility. The analyses indicate a very broad range in the systems' abilities to offset pollutant emissions, due to variation in the solar resource available and the emission rates of the participating utilities' load following generation plants. Each system's ability to reduce building peak demand was dependent on the correlation of that load to the available solar resource. Most systems operated in excess of 50% of their capacity during building peak load hours in the summer months, but well below that level during winter peak hours. Similarly, many systems operated above 50% of their capacity during utility peak load hours in the summer months, but at a very low level during winter peak hours.  相似文献   

12.
Four 3 kW grid-connected photovoltaic (PV) generation systems have been installed and monitored at the Field Demonstration Test Center in Korea since October 2002. To observe the overall effect of meteorological conditions on their operation characteristics by field test, the monitoring system has been constructed for measuring and analyzing the performance of PV systems and components in November 2002. In this paper, the performance of PV systems is evaluated and analyzed not only for component perspective but also for global perspective by reviewing one year of monitoring results and loss factors of PV systems. On the basis of these monitoring results, the performance of PV systems is compared to the measured performance of PV systems with the estimated performance by simulation. These results will indicate that it is highly imperative to develop evaluation, analysis and application technology for PV systems.  相似文献   

13.
大量光伏电站的并网,相应地带来并网稳定性、自身抗扰动性等相关问题。由于单级型光伏并网系统和双级型光伏并网系统的拓扑结构不同,其并网运行的动态特性也不尽相同。文章基于PSCAD/EMTDC电磁暂态仿真软件,分别搭建单级型和双级型光伏并网系统模型,并对比仿真了光照扰动与电网电压跌落扰动下两种光伏并网系统的动态特性,单级型光伏并网系统更适合于大中型光伏电站。  相似文献   

14.
设计了一个家用并网光伏系统并计算其年发电量以研究其运行性能。在设定指定地点地理位置并导入气象数据,并根据屋顶可用面积决定光伏阵列的排布和逆变器参数后,利用PVsyst软件对光伏系统进行模拟,并计算发电量。结果表明:所设计的光伏系统年发电量约为7 114 kW·h,发电效率为75.1%。结合调查数据发现,该光伏系统发电量超过了当地用户年平均用电量;光伏系统一年中日输出电量的变化趋势显示,光伏系统发电量高峰时的日发电量均值可达35 kW·h以上;而光伏系统发电量低谷时的日发电量均值不足20 kW·h;光伏系统各项损失在理论发电量中的占比变化趋势显示,每年6、7、8月系统的光伏阵列损失最大,其原因是夏季气温升高使得光伏阵列运行性能受到影响。该光伏系统发电量可以满足一般家庭的用电需求,且用户可以参考光伏系统发电量的变化趋势选择合理的用电方式。  相似文献   

15.
Large-scale, grid-connected photovoltaic systems have become an essential part of modern electric power distribution systems. In this paper, a novel approach based on the Markov method has been proposed to investigate the effects of large-scale, grid-connected photovoltaic systems on the reliability of bulk power systems. The proposed method serves as an applicable tool to estimate performance (e.g., energy yield and capacity) as well as reliability indices. The Markov method framework has been incorporated with the multi-state models to develop energy states of the photovoltaic systems in order to quantify the effects of the photovoltaic systems on the power system adequacy. Such analysis assists planners to make adequate decisions based on the economical expectations as well as to ensure the recovery of the investment costs over time. The failure states of the components of photovoltaic systems have been considered to evaluate the sensitivity analysis and the adequacy indices including loss of load expectation, and expected energy not supplied. Moreover, the impacts of transitions between failures on the reliability calculations as well as on the long- term operation of the photovoltaic systems have been illustrated. Simulation results on the Roy Billinton test system has been shown to illustrate the procedure of the proposed frame work and evaluate the reliability benefits of using large-scale, grid-connected photovoltaic system on the bulk electric power systems. The proposed method can be easily extended to estimate the operating and maintenance costs for the financial planning of the photovoltaic system projects.  相似文献   

16.
In the developed world, grid-connected photovoltaics (PVs) are the fastest-growing segment of the energy market. From 1999 to 2009, this industry had a 42% compound annual growth-rate. From 2009 to 2013, it is expected to grow to 45%, and in 2013 the achievement of grid parity – when the cost of solar electricity becomes competitive with conventional retail (including taxes and charges) grid-supplied electricity – is expected in many places worldwide. Grid-connected PV is usually perceived as an energy technology for developed countries, whereas isolated, stand-alone PV is considered as more suited for applications in developing nations, where so many individuals still lack access to electricity. This rationale is based on the still high costs of PV when compared with conventional electricity. We make the case for grid-connected PV generation in Brazil, showing that with the declining costs of PV and the rising prices of conventional electricity, urban populations in Brazil will also enjoy grid parity in the present decade. We argue that governments in developing nations should act promptly and establish the mandates and necessary conditions for their energy industry to accumulate experience in grid-connected PV, and make the most of this benign technology in the near future.  相似文献   

17.
At present, photovoltaic grid-connected systems (PVGCS) are experiencing a formidable market growth. This is mainly due to a continuous downward trend in PV cost together with some government support programmes launched by many developed countries. However, government bodies and prospective owners/investors are concerned with how changes in existing economic factors – financial incentives and main economic parameters of the PVGCS – that configure a given scenario may affect the profitability of the investment in these systems. Consequently, not only is a mere estimate of the economic profitability in a specific moment required, but also how this profitability may vary according to changes in the existing scenario. In order to enlighten decision-makers and prospective owners/investors of PVGCS, a sensitivity analysis of the internal rate of return (IRR) to some economic factors has been carried out. Three different scenarios have been assumed to represent the three top geographical markets for PV: the Euro area, the USA and Japan. The results obtained in this analysis provide clear evidence that annual loan interest, normalised initial investment subsidy, normalised annual PV electricity yield, PV electricity unitary price and normalised initial investment are ordered from the lowest to the highest impact on the IRR. A short and broad analysis concerning the taxation impact is also provided.  相似文献   

18.
In recent years, many different techniques are applied in order to draw maximum power from photovoltaic (PV) modules for changing solar irradiance and temperature conditions. Generally, the output power generation of the PV system depends on the intermittent solar insolation, cell temperature, efficiency of the PV panel and its output voltage level. Consequently, it is essential to track the generated power of the PV system and utilize the collected solar energy optimally. The aim of this paper is to simulate and control a grid-connected PV source by using an adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA) controller. The data are optimized by GA and then, these optimum values are used in network training. The simulation results indicate that the ANFIS-GA controller can meet the need of load easily with less fluctuation around the maximum power point (MPP) and can increase the convergence speed to achieve the MPP rather than the conventional method. Moreover, to control both line voltage and current, a grid side P/Q controller has been applied. A dynamic modeling, control and simulation study of the PV system is performed with the Matlab/Simulink program.  相似文献   

19.
Optimum PV/inverter sizing ratios for grid-connected PV systems in selected European locations were determined in terms of total system output, system output per specific cost of a system, system output per annualised specific cost of a system, PV surface orientation, inclination, tracking system, inverter characteristics, insolation and PV/inverter cost ratio. Maximum total system output was determined for horizontal, vertical and 45° inclined surfaces for a low efficiency inverter for sizing ratios of 1.5, 1.8 and 1.3, respectively; and for a medium efficiency inverter with sizing ratios of 1.4, 1.5 and 1.2. PV surface orientation and inclination have little impact on the performance of a high efficiency inverter. For different PV tracking systems and for different inverter characteristics, the optimum sizing ratio varied from 1.1 to 1.3. The PV/inverter cost ratio and the PV and inverter lifetimes have significant impact on the optimum PV/inverter sizing ratio. A correlation relating optimum sizing ratio and PV/inverter cost ratio has been developed; the correlation coefficients were found to be functions of insolation and inverter type. The impact of PV/inverter sizing ratio on PV array performance was less when PV array has a much higher cost than the inverter. The optimum sizing ratio for PV/inverter cost ratio of 6 and low efficiency inverter system varied from 1.4 to 1.2 for low to high insolation sites. For a high efficiency inverter system, the corresponding variation was from 1.3 to 1.1.  相似文献   

20.
《Energy》1999,24(2):93-102
Grid-connected photovoltaic systems are required to introduce photovoltaic solar energy into urban areas. To analyze these systems, a 2.0 kWp power system has been installed at the University of Málaga, Spain. The array power output was estimated by using measured I–V curves for the installed modules with minimization of mismatch losses. The supplied grid energy and main performances are described. The effects on system yield of threshold-inverter and coupling losses of the inverter to the grid have been studied. During 1997, the system supplied 2678 kWh to the grid, i.e. the mean daily output, was 7.4 kWh. The annual performance ratio was 64.5% and the optimal value 67.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号