首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Ti-Zr-Ni-Cu非晶钎料箔实现了TZM合金的真空钎焊连接,研究了钎焊温度和保温时间对接头界面微观组织结构及力学性能的影响。通过扫描电镜(SEM)、能谱仪(EDS)分析了接头界面组织及物相成分、确定接头的断裂位置和断裂方式,通过X射线衍射仪(XRD)分析确定接头中存在的物相。研究结果表明:接头典型界面组织为TZM/Ti-Mo固溶体+(Ti,Zr)2(Ni,Cu)/TZM,随着钎焊温度或保温时间的增加,钎缝中Ti-Mo固溶体的含量增加,(Ti,Zr)2(Ni,Cu)相含量减少,且Ti-Mo固溶体中Mo元素的原子比例增加,钎缝与母材连接界面处、母材中的裂纹状结构含量增加。随钎焊温度或保温时间的增加,接头剪切强度先增大后减小,当钎焊温度1020℃,保温时间20 min时,接头具有最大剪切强度105 MPa。断口分析表明,断裂位置为钎缝与母材连接界面,断裂方式为解理断裂兼部分沿晶断裂。  相似文献   

2.
采用72Ag-28Cu钎料对铜与铪进行真空钎焊试验.钎焊温度为840℃,保温时间为15 min,真空度试验范围为5.0×10-2~8.0Pa.研究了钎焊真空度对铜与铪钎焊接头组织及性能的影响,采用场发射扫描电子显微镜(FESEM)观察钎焊接头的组织形貌,采用ZWICKZ050电子万能材料试验机测试接头剪切强度.结果表明:随着钎焊真空度的升高,接头剪切强度呈先升高后降低的趋势;在钎焊温度为840℃、保温时间为15 min时,较佳的钎焊真空度为2.0×10-1Pa.  相似文献   

3.
采用65Ti-25Ni-10Nb (%,质量分数)钎料对体心立方结构的βNb-Ti固溶体合金进行钎焊,研究了钎焊条件对接头微观组织和力学性能的影响规律。研究发现,接头焊缝组织主要由{(Nb,Ti)+TiNi}共晶组织、(Nb,Ti)固溶体相、 TiNi相、 Ti_2Ni相和富Ti相组成。随着钎焊温度的升高和钎焊时间的延长,钎焊过程中钎料和基体中的合金元素发生互扩散,焊缝组织中的{(Nb, Ti)+TiNi}共晶组织和TiNi相逐向Ti_2Ni相转变,并在Ti_2Ni相内部逐渐析出富Ti相。同时,基体中的其他合金元素如Al, V和Cr元素向钎料中扩散。随钎焊温度的升高或保温时间的延长,钎焊接头的剪切强度呈先增加后降低的趋势。这主要是由于Ti_2Ni相具有较高的剪切模量,其含量的增加使钎焊接头的剪切强度增加,但随后Ti_2Ni相内部析出富Ti相使焊缝内应力增加,导致钎焊接头的剪切强度迅速降低。在1150℃钎焊15 min时, 65Ti-25Ni-10Nb/Nb-Ti钎焊接头的室温剪切强度可达到617.7 MPa。  相似文献   

4.
通过金相显微镜、X射线衍射仪、透射电子显微镜、扫描电子显微镜和拉力试验机,研究了不同钎焊工艺参数对SnAg0.5CuZn0.1Ni/Cu无铅微焊点界面组织、金属间化合物层厚和力学性能的影响。结果表明,添加0.1%Ni能显著细化SnAg0.5CuZn钎料合金的初生β-Sn相和共晶组织;当钎焊温度为270℃、钎焊时间为240s时,钎焊接头的剪切强度达到最大,为45.6 MPa;钎焊接头界面区粗糙度、金属间化合物层厚度和钎焊接头的剪切强度均随着钎焊工艺参数的变化而变化。  相似文献   

5.
采用真空电弧熔炼法制备钛基钎料Ti-25Cu-15Ni(at.%),通过DSC、SEM和XRD分析确认该钎料的焊接温度和微观组织结构及形貌。采用该钎料钎焊工业纯钛TA0,并分析焊接接头的微观组织结构。结果表明,该钎料主要由α-Ti和Ti2Cu共晶组织构成,在1 000℃焊接温度下,在钎料/焊接母材接头界面,有大量的Ti2Cu和TiNi化合物形成。同时,在靠近母材部分存在α-Ti+TiNi共晶组织,Ni元素扩散到钛合金母材中形成针状TiNi化合物,有利于连接强度的提高。测试了在1 000℃下的不同保温时间对试样拉伸强度的影响,结果表明,1 000℃下保温30 min制备的连接件最大拉伸强度为185.65 MPa。  相似文献   

6.
采用TiZrNiCu非晶钎料实现了TZM合金与ZrC_p-W复合材料的真空钎焊连接,通过扫描电镜(SEM)、能谱仪(EDS)及X射线衍射(XRD)等方法分析了接头界面的微观组织结构、生成产物及钎焊温度对界面组织及接头性能的影响,确定了接头的断裂位置和断裂方式。研究结果表明:钎焊接头的典型界面结构为TZM/Mo(s,s)+Ti(s,s)+(Ti,Zr)_2(Ni,Cu)/Ti(s,s)+(Ti,Zr)_2(Ni,Cu)/(Ti,Zr)_2(Ni,Cu)/ZrC_pW。随钎焊温度升高,TZM一侧扩散层逐渐变宽,其内部的线状条纹变多、增宽,而钎缝逐渐变窄,靠近ZrC_p-W一侧反应层宽度变化不大,钎料向TZM一侧扩散增快、Mo及W颗粒向钎料中的溶解加快。接头的抗剪强度随钎焊温度升高先升高后降低,当钎焊温度为1020℃、保温10 min时,接头获得最大抗剪强度为121 MPa。断口分析表明,断裂位置位于TZM母材与钎缝之间的反应层,断裂方式为脆性断裂。  相似文献   

7.
采用CoFeCrNiCu高熵合金钎料实现了ZrB2-SiC陶瓷与Nb合金的有效连接。通过扫描电镜(SEM)、能谱仪(EDS)及X射线衍射(XRD)等方法分析了接头界面的微观组织结构、生成产物及保温时间对界面组织及接头性能的影响,确定了接头的断裂位置和断裂方式。研究结果表明:钎焊接头的典型界面结构为ZrB2-SiC/Cr2B/(Cr,Fe)2B+fcc+Cr2B+Laves+Cu((s,s))/Nb。钎焊过程中,Nb合金向液态钎料中的溶解量以及液态钎料中Cr向ZrB2-SiC陶瓷富集的数量决定了钎焊接头界面组织的形成及其演化。随着保温时间的延长,ZrB2-SiC陶瓷侧的Cr2B反应层增厚,钎缝中Laves相随着Nb合金向液态钎料中的溶解量增加而增加。陶瓷侧界面反应层的厚度及形态和钎缝中Laves相的形态及分布共同决定着接头的抗剪强度。当钎焊温度为1160℃,保温60 min时,接头的抗剪强度最...  相似文献   

8.
以Al、Ti复合金属粉末为活性钎料对高纯石墨进行连接,研究加热温度和保温时间对接头组织和性能的影响。采用SEM、EDS、XRD研究接头界面结构及相的组成,并对钎焊机理进行分析。结果表明:1 100℃钎焊10 min时接头与石墨结合紧密,强度达到12.96 MPa。微观结构研究和XRD相分析表明界面区域发生了化学反应,反应产物主要为TiC;焊接接头的界面结构为石墨/TiC+TiAl3+Ti-Al固溶体/石墨。  相似文献   

9.
采用OM、XRD、SEM和拉力试验机,研究了钎焊工艺参数对SnAg0.5CuZn0.1Ni/Cu无铅微焊点界面金属间化合物(IMC)和力学性能的影响。结果表明:添加0.1%Ni(质量分数)能显著细化SnAg0.5CuZn钎料合金的初生β-Sn相和共晶组织;钎焊温度为270℃、钎焊时间为240 s时,钎焊接头的剪切强度达到最大值47 MPa。  相似文献   

10.
制备了Al-Cu共晶合金钎料,以纯铝棒料为基体采用对接接头进行了真空钎焊。使用SEM和EDS对Cu元素的扩散现象进行了观察,初步研究和讨论了不同钎焊温度和保温时间条件下Cu元素在基体中的扩散效果和最终产物。实验结果表明:钎焊温度过低、保温时间过短时.Cu元素在基体内部未能充分扩散,在基体晶界上严重偏析,生成Al-Cu相中最脆的θ相(Al-Cu);提高钎焊温度和保温时间有利于提高Cu元素在Al基体中的扩散效果,但过高的钎焊温度又导致θ相的重新出现。选取最佳的钎焊工艺参数才能获得良好的钎缝质量。  相似文献   

11.
姜泽东 《中国冶金》2019,29(9):51-55
镍基高温合金GH4413在高温下具有较为优异的高温持久强度和抗蠕变性能,在航空发动机和各种工业燃气轮机中得到广泛应用。以BNi 2作为填充合金材料使用液相扩散焊对GH4413合金进行了连接,研究了在焊接温度分别为1 030和1 080 ℃、保温时间分别为30和60 min等不同焊接参数下GH4413镍基高温合金的接头微观组织、成分分布和显微硬度。扫描电镜(SEM)以及能谱分析结果表明,当焊接温度为1 080 ℃、保温时间为60 min 时,钎缝组织中形成了性能良好的固溶体,且随着焊接温度的升高和保温时间的延长,钎缝的宽度增加,钎料元素向母材中的扩散深度逐渐增加,在母材近缝区形成了金属间化合物。  相似文献   

12.
SnAgCu系无铅钎料是颇具潜力的SnPb系钎料替代品,但该钎料在钎焊过程中会在钎料/铜基板界面生成具有一定厚度的金属间化合物层。锡基钎料钎焊接头的服役温度一般高于常温,在服役温度下,钎焊接头的金属间化合物(IMC)层的形态和厚度均会发生改变。本实验采用Sn-3.8Ag-0.7Cu钎料,向其中添加不同量的La(x=0,0.2,0.5),比较各成分钎焊接头常温IMC层厚度,并将不同成分钎料的接头分别在75℃、125℃、160℃温度时效处理24h后,观察界面IMC层的形态并计算尺寸。结果表明,适量La的添加对界面IMC层的生长具有抑制作用;当La的添加量为0.5wt.%,与未添加La时相比,常温条件下,其IMC层厚度下降了41.51%;温度时效后,接头IMC层厚度与时效温度近似呈线性关系,且随着La的增加,其比例系数减小。  相似文献   

13.
采用Ag-Cu-Ti钎料连接C/C复合材料,用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)等分析连接层的微观结构与相组成,并测试连接层的剪切强度。结果表明:C/C复合材料连接层的剪切强度跟连接温度与保温时间有关;在850℃、保温30 min条件下获得的连接层剪切强度最高,达到26.7 MPa;同时连接层与基体材料形成机械嵌合,界面发生元素扩散和冶金反应。钎焊连接层形成固溶体和化合物,包括Ag(s.s)、Cu(s.s)、Cu4Ti3和TiC。剪切断口形貌表明钎焊层与C/C坯体之间结合较好,具有一定的连接强度。  相似文献   

14.
采用SAC0307无铅焊料实现了Cu/Cu的低温互连,研究了纳米Ni颗粒和超声辅助共同作用下SAC0307低银无铅焊料接头的显微组织和力学性能。结果表明:两种焊料界面IMC厚度均随着超声时间的增加先升高后下降;低温时,焊料接头IMC呈扇贝状,复合焊料接头IMC呈锯齿状;随温度升高,锯齿状的IMC变得更显著。超声辅助下,钎焊温度为210~230℃时,随超声时间延长,两种钎焊接头剪切强度先增加后减小,均在超声5 s时剪切强度达到最高;钎焊温度为240℃时,两种焊料接头剪切强度随超声时间延长而下降。无超声时,240℃时两种焊料接头剪切强度均最高,分别为25.54 MPa和26.54 MPa;超声5 s时,220℃钎焊的焊料接头剪切强度最高,为31.31 MPa,210℃钎焊的复合焊料接头剪切强度最高,为35.26 MPa。焊料处在固态、半固态或黏稠液态,超声振动有助于焊料填缝,获得密实的接头,接头力学性能提高;而振动时间过长,焊料中气体和氧化夹杂等不容易溢出,会聚集长大造成力学性能下降。  相似文献   

15.
Ni元素对Al-Si-Cu基真空钎焊料接头性能的影响   总被引:1,自引:0,他引:1  
研究了添加Ni的Al-Si-Cu基钎料真空钎焊LF21铝合金接头的力学性能、微观组织形貌.结果表明,采用添加Ni元素的真空钎料,可提高钎焊接头的剪切强度,其机制在于Ni元素能够改善LF21铝合金真空钎焊接头焊缝及其基体组织的分布.但随着Ni元素含量的增加,其钎料的熔点也有所提高.  相似文献   

16.
本文针对PDC钻头焊接的需要,研究了硬质合金真空钎焊用的Ag-Cu-In-Ti活性钎头。结果表明,在PDC热稳定极限温度以下,急冷的Ag-Cu-In-Ti钎料可以连接硬质合金,接头剪切强度可达308MPa以上。连接过程中,活性元素Ti起着重要的作用。Ti在结合界面富集并与硬质合金发生化学反应,反应的主要产物为TiC。钎焊温度和保温时间都有一个最佳范围,在此范围之内,接头强度最高。  相似文献   

17.
采用厚20 μm的非晶态Ti-Zr-Ni-Cu钎料,真空钎焊连接用于聚变堆面向等离子体部件的钨和铜铬锆合金,钎焊温度分别为860、880和900℃,对880℃下的钎焊样品进行热等静压(HIP)处理.采用SEM和EDS分析连接接头的形貌和成分,用静载剪切法测量焊接接头强度.测试结果表明在860~880℃下钎焊10 min能够获得较好的连接界面,经880℃钎焊后焊接接头的剪切强度为16.57 MPa,880℃钎焊后HIP处理的试样界面结合强度提高至142.73 MPa,说明真空钎焊后HIP处理可以显著改善接头的结合强度.  相似文献   

18.
钛基钎料钎焊石墨与TZM合金接头组织和性能研究   总被引:3,自引:0,他引:3  
徐庆元  李宁  熊国刚  张伟  赵伟 《稀有金属》2005,29(6):823-826
研究了钛基钎料钎焊石墨与TZM合金的钎焊组织。结果表明,使用钛合金箔为钎料能很好润湿石墨和TZM母材,通过界面反应和TLP扩散连接获得良好的钎焊组织。接头组织主要分为两层:Ti-TiC和Ti-Mo固溶体。热震循环试验证明接头再熔化温度高于1400℃,承受热应力而不失效。接头剪切强度为14.1MPa。  相似文献   

19.
通过计算Cu/Al管氧乙炔气体火焰钎焊条件下形成金属间化合物的各化学反应的熵变,对Cu/Al金属间化合物的形成及向CuAl2转化的趋势进行了化学热力学分析;结合XRD、SEM、EDS研究了Cu/Al管氧乙炔气体火焰钎焊接头组织与元素分布特征.结果表明,Cu/Al管氧乙炔气体火焰钎焊条件下,接头中脆性金属间化合物CuAl2由Cu、Al原子的直接结合和其他Cu/Al金属间化合物与Al原子的继续反应生成,其中CuAl自主转化趋势较强;热力学计算分析与接头XRD分析结果一致.钎焊接头可分为3个特征区域:靠近Al基体侧形成了宽度约30μm的α-Al与α-Al+CuAl2二元共晶区;钎缝中心偏Al基体一侧形成了宽度约150μm组织细密的多元共晶组织区;钎缝中靠近Cu基体宽度约120μm区域,Cu的大量扩散并与Al充分反应,形成了粗大珊瑚状CuAl2.  相似文献   

20.
设计了CoNi(Si,B)CrTi和CoFeNi(Si,B)CrTi两种成分的钴基钎料,对SiC陶瓷进行了钎焊试验。结果表明CoFeNi(Si,B)CrTi钎料可用于SiC陶瓷的钎焊。钎料/SiC界面由多层硅化物和TiC条带组成,钎缝中央的基体为Co-Fe-Ni-Cr-Ti-Si相和Fe-Co-Cr-Ni金属相,其上弥散分布着许多细小的TiC颗粒。在1150℃/10 min,采用120μm厚的CoFeNi(Si,B)CrTi钎料钎焊的SiC接头室温四点弯曲强度最高,为161 MPa,且该接头具有稳定的高温强度,室温、700和800℃下钎焊接头的三点弯曲强度分别为176,178和184 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号