首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
回转式烘干机是水泥生产和非金属矿原料及产品的烘干所采用的典型设备。这种烘干机体筒大、散热面积大 ,在无任何保温措施的情况下 ,其热效率低、能耗高、产量低 ,特别是在南方雨季 ,气温偏低时 ,入烘干机的原料水分可高达 2 0 %以上。由于含水分多 ,使烘干过程中废气含尘浓度增加 ,达 40 % ,温度也超过 1 0 0℃ ,工作环境恶劣。这种烘干方式由于温差变化大 ,散热过多 ,造成烘干机内温度不稳定 ,产品的含水量也达不到要求。针对上述问题 ,本文介绍了采用一种专门配制的涂料用于保温节能后回转式烘干机的技术经济效果。1 涂料的制备实验证明…  相似文献   

2.
周君明  彭冬根  黄红 《太阳能学报》2018,39(6):1533-1542
利用Simulink软件建立余热驱动溶液除湿蒸发冷却新风系统的模拟仿真平台,通过模型模拟研究余热驱动溶液除湿蒸发冷却新风系统工作特性。综合分析传热单元数NTUm、余热热水温度及流量、空气质量流量、溶液质量流量、室外新风参数对系统的影响。研究结果表明,系统部件AAHX2、RHX、DHX的NTUm对系统性能影响较大,确定各组成部件NTUm优选范围,为了满足送风效果及节能要求,其他系统影响因素的控制范围宜为:再生器热水温度不宜低于60℃、热水质量流量不宜超过0.6 kg/s、空气质量流量宜取0.25~0.4 kg/s、溶液质量流量宜取0.36~0.6 kg/s、室外空气温度不宜超过40℃、室外空气含湿量不宜超过0.024 kg/kg,系统平均热力系数ζ高达0.8,研究成果可为该类系统的设计应用提供理论参考。  相似文献   

3.
本文提出了一种新型的以冷制冷的氨水吸收式制冷系统。系统利用LNG气化释放的冷能作为冷源,通过少量的高品位冷能的利用来制取多量的低品位冷能,制冷循环采用氨水吸收式制冷系统。通过对系统的热力分析表明:当制冷温度(蒸发器蒸发温度)为0℃,蒸馏率为0.185,LNG冷能输入系统的温度为-60℃时,系统的性能系数为1.74。在此条件下对系统进行火用分析,发现吸收器的火用损失最大,其火用损系数约为24%,系统总的火用效率为41%。对系统进行特性规律分析,发现当蒸发器的蒸发温度不变时,发生器氨气蒸馏率的增加会使得发生器操作压力下降,LNG冷却温度下降,但同时系统的性能系数会增加。蒸馏温度越高,系统的性能越好,当制冷温度为10℃时,系统的性能系数可以达到1.8以上。  相似文献   

4.
研究了低品位烟气余热利用有机朗肯循环系统的节能潜力。选取10种循环工质,以120℃~160℃烟气为热源建立系统的数学模型,以某1000MW超超临界再热机组为例,根据热力学第一、第二定律,研究不同蒸发温度、热源温度下各工质对系统的影响,从而确定R123为该系统的最优工质。重点对ORC余热利用系统和常规余热利用系统的经济性进行对比分析。结果表明:相比于采用常规余热利用系统,案例电厂机组采用ORC系统的输出功率增加了6. 99MW,供电标煤耗降低了1. 774g/(k W·h),显著提高了烟气余热利用效果。  相似文献   

5.
为拓宽水蒸气热泵在余热回收中的工作温区,降低水蒸气压缩机的排气温度,对采用喷水降温螺杆压缩机的水蒸气热泵系统及其主要部件建立热力学模型,研究了螺杆压缩机喷水温度,及最佳喷水温度下蒸发温度、冷凝温度对系统性能的影响。结果表明:喷水可以有效降低压缩机排气温度,喷水温度在73~87℃之间可保证压缩机运行在报警温度之下;压缩机耗功和冷凝器放热量随喷水温度的升高先增加后降低,在喷水温度为80℃时系统性能系数(EER)最佳;最佳喷水温度下,蒸发温度提高,蒸发器吸热量、压缩机耗功、冷凝器放热量及EER增大,压缩机压比降低;冷凝温度提高,压缩机耗功、压比增大,冷凝器放热量和EER降低。  相似文献   

6.
《能源与环境》2004,(3):76-76
一项利用窑尾余热发电的新技术近日通过专家鉴定 ,该项目在国内特种水泥生产企业中尚属首家。该技术不加任何补燃措施 ,纯利用余热发电。这一环保节能技术的采用 ,可减少发电厂同样发电量条件下有害物质的排放 ,节约原来因降低排气温度而使用的冷却水及电力 ,排气温度的降低还可提高原设备电除尘效果 ,降低水泥厂粉尘污染。另外 ,该技术由于将较高的废气温度降低到了 10 0℃左右 ,从而也降低了对环境的热污染窑尾余热发电新技术通过专家鉴定  相似文献   

7.
针对某5 000 t/d新型干法水泥窑系统设计了纯低温余热双压发电系统,对系统各个参数进行了理论计算分析,得到了双压系统中主蒸汽温度和压力、给水温度、高压节点温差和接近点温差、低压蒸汽温度和压力、低压节点温差和接近点温差、系统给水温度对系统发电功率的影响规律.计算结果表明:影响水泥窑余热系统发电功率的因素较多,在进行余热发电系统设计时,应对系统发电功率和经济性进行综合考虑,以选取优化参数.在计算的各工况中,当窑尾余热锅炉主蒸汽温度为300 ℃、主蒸汽绝对压力为1.6 MPa、给水温度为170 ℃、高压低压节点温差为15 ℃、高压低压接近点温差为11 ℃;窑头余热锅炉低压蒸汽温度为180 ℃、低压蒸汽绝对压力为0.25 MPa、系统给水温度为50 ℃,汽轮机背压为8 kPa时,系统发电功率是最大的,达到13 791.878 kW.  相似文献   

8.
印染废气具有高温、高湿的特点,为充分回收其余热,提出了一种复合型热泵系统。该系统由直接换热器和蒸汽压缩式热泵主机复合而成以三友化纤有限公司烘干排气余热回收制取70℃热水为应用背景,分别从热力学和经济性角度对复合型热泵系统设计进行了优化分析,并综合考虑选择出了最佳的余热回收分配方案。该方案直接换热器换热量占总回收余热量的23%,静态投资回收期为1.631年,系统性能系数为6.43,具有良好的应用潜力。  相似文献   

9.
《节能》2020,(2):100-103
IGCC电站有2台9E合成气燃气轮机及相应的余热锅炉,由于余热锅炉已经安装了SCR脱硝设备,余热锅炉换热面积偏小,导致余热锅炉排烟温度偏高。为了深度利用燃气轮机余热锅炉的排烟余热,计算了合成气燃气轮机余热锅炉在正常运行条件下可以进一步回收的排烟热量及排烟余热深度利用的可行性,通过在余热锅炉烟囱外部布置环形受热面的方法,加热除盐水,实现燃气轮机排烟余热的深度利用。当余热锅炉的排烟温度由原来的200℃降低到100℃时,可以减少除氧器热力除氧蒸汽51 t/h,同时由于燃气轮机排气压力升高,燃气轮机发电量减少480.2 kWh,每年总收益为5 605.9万元,节能效果显著。  相似文献   

10.
通过研究燃煤电站深度余热利用系统的变工况特性,以探究深度余热利用系统在变工况条件下节能效果的变化规律和原因。以某典型超超临界机组为案例,通过热力学计算与分析,定量分析机组节能效果及其变化情况,详细分析各因素对节能效果的影响。研究结果表明:从节能效果规律上看,深度余热利用系统在各负荷下均呈现较为理想的节能效果,并且在较高负荷时节能效果更稳定,在较低负荷下,随着负荷降低,节能效果呈现缓慢下降趋势。以案例机组为例,设计工况下节能效果达到3.27 g/(kW·h),随着负荷降低至90%、75%和50%,节能效果分别降至3.26 g/(kW·h)、2.94 g/(kW·h)和2.62 g/(kW·h)。进一步分析表明产生这种变化的主要原因在于低负荷时单位燃料的回收余热量和烟气流量均出现大幅下降,导致旁路烟道内烟气流量和烟气温度出现较大下降,进而导致深度余热利用系统最终节能效果出现明显下降的趋势。  相似文献   

11.
为了提高燃煤发电机组效率、降低机组水耗,本文针对烟气余热及水协同回收系统展开研究.该系统通过烟气换热器降低烟气温度至95℃,回收低温烟气余热的同时降低脱硫塔耗水量,并通过烟气冷凝器回收烟气中的水分,实现节能与节水的协同.本文研究了系统的运行特性,发现其有良好的节能节水潜力,同时研究了系统换热器面积及冷凝水质量流量对系统运行参数及性能的影响,发现低温省煤器、烟气冷却器、烟气再热器面积和低温省煤器冷凝水质量流量降低可以提高进入电除尘器烟气温度,为系统变工况运行调控、防止低温腐蚀提供指导.  相似文献   

12.
基于工业余热回收领域的有机朗肯循环低温余热发电系统,利用MATLAB软件编程,针对不同余热温度,考虑外部冷热源对系统经济性影响,研究不同有机工质在单位净输出功率造价、热回收效率、输出功率、膨胀比和蒸发压力等方面的表现。结果表明:R134a、R245fa和R601a分别在余热温度100~124℃、124~130℃和130~240℃条件下,单位净输出功率造价最优;R134a、R152a、R142b和R141b分别在余热温度100~124℃、124~130℃、130~160℃和160~200℃条件下,输出功率和热回收效率均为最优;余热温度160℃以下时,采用11种工质的有机朗肯循环系统的膨胀比均在10以下,而余热温度160℃以上时,膨胀比迅速增大;在蒸发压力限定不大于2.5 MPa条件下,R134a适用的余热温度范围最小,为100~118℃,R113适用的余热温度范围最大,为100~240℃。  相似文献   

13.
针对客车用空调器在最大负荷制冷工况下压缩比大、排气温度高、系统能效降低、压缩机因过热保护频繁停机等突出问题,提出了采用带经济器的中压补气技术,并对系统循环过程进行理论分析,测试了中压补气技术对电动客车空调在最大负荷制冷工况下的性能影响。结果表明:与不补气的制冷系统相比,采用带经济器的中压补气技术显著降低了压缩机的排气温度,使系统安全可靠运行,尤其是转速高达5 000 r/min时,不补气排气温度已超过120.0℃,而此时中压补气排气温度却不高于100.0℃;采用中压补气技术提升了系统制冷量和能效比,且随着压缩机转速的提高,其优势更加明显,当压缩机转速由2 000提高到4 000 r/min时,其系统制冷量提高幅度为12.8%~20.1%,系统能效比提高幅度为7.3%~14.3%。  相似文献   

14.
空压机工作时主机排气温度高达约90℃,如不进行释放,空压机的使用寿命将受到影响且压缩空气的质量也会变差。直接采用冷却系统排放热量,不仅浪费能源,而且会造成热污染。阐述螺杆空压机原理和相应的余热回收系统特点,对节能效益进行分析。运用螺杆空压机的多种余热回收途径和形式,可有效利用空压机的余热替代不可再生的能源,在实现节能减排的同时提高企业的经济效益和社会效益。  相似文献   

15.
  [目的]  燃气轮机排气温度高,可增加底循环,利用排气的余热发电,从而提高燃料总的能量利用率。鉴于超临界CO2循环热效率高,并且具有系统简单、结构紧凑、运行灵活等潜在优势,可与燃气轮机组成新型的燃气-超临界CO2联合循环。  [方法]  为了充分利用燃气轮机排气余热,提出在简单回热超临界CO2循环的基础上,再嵌套一个简单回热循环的布置方式,并以PG9351(FA)型燃气轮机为例,对其热效率进行了计算分析。同时,在系统中增加余热利用装置,可将剩余热量用于供热、转换为冷量或发电。  [结果]  结果表明:对于选定的燃气轮机,超临界CO2循环最高温度可达约600 ℃,循环发电效率约32%,获得余热温度为170 ℃以上,余热热量占燃气轮机排气热量9%,联合循环发电效率约54%。  [结论]  燃气-超临界CO2联合循环发电系统具有较高的热效率,并且保留部分较高品位的余热,可进一步用于电厂运行。  相似文献   

16.
为有效利用飞机辅助动力装置(Auxitlary Power Unit , APU)排气余热,基于有机朗肯循环(Organic Rankine Cycle, ORC)发电系统,构建了APU余热回收系统。系统以APU排气余热为输入,驱动ORC做功,输出电能,为机载设备提供二次能源。结合工程热力学原理,建立系统热力学模型,并通过Matlab编程对余热回收系统进行了仿真计算及性能分析。仿真结果表明,系统功率及效率随飞行马赫数增加而降低;APU余热回收系统在飞机低音速飞行时有良好的性能;马赫数小于1时,系统功率在12 kW以上,效率在11%以上,耗气率低于0.0262 kg/kJ。  相似文献   

17.
研究了燃气热泵(GHP)系统在过渡季节制备生活热水的性能特性,分析了发动机余热回收对GHP系统性能的影响。在不同环境温度(15~24℃)和进水温度(37.7~47.8℃)下,考察回收与不回收发动机余热模式对生活热水制热量■、耗气功率(Pgas)及一次能源利用率(rPER)的影响规律。结果表明,随着环境温度的升高,Pgas减小,而■和rPE R呈现递增的趋势;随着进水温度的升高,Pgas增大,而■和rPER呈现递减的趋势。其中环境温度20~24℃与进水温度37.7~47.8℃为Qh的不敏感区间,在环境温度为24℃和进水温度为37.7℃条件下,rPER高达2.004。GHP系统的余热回收量分别占总制热量和发动机总余热的25.00%~30.16%和62.17%~71.56%,系统的余热利用率高。  相似文献   

18.
研究了如何提高余热锅炉型三压再热联合循环系统的效率,应用分析的方法建立了系统效率数学模型,以联合循环系统效率最高作为系统性能的评判标准。在亚临界范围内,对余热锅炉的蒸汽参数进行了优化;针对余热锅炉进气温度对余热锅炉性能的影响进行分析,在此基础上提出燃气轮机排气部分回热利用,并研究了回热利用对联合循环效率的影响。计算结果表明:经余热锅炉优化和排气部分回热利用,在基本负荷下,PG9351FA机组的联合循环热效率可提高1.33%;在75%和50%的负荷下,效率分别提高2.11%和4.17%;而具有再热的GT26机组热效率高达60.73%。  相似文献   

19.
提出一种新型双热源吸收式制冷循环,高压发生器由动力余热驱动,产生的冷剂蒸汽部分用来驱动低压发生器I产生制冷剂蒸汽,另外一部分用来将低压发生器I和低压发生器II产生的冷剂蒸汽引射至冷凝压力。由太阳能热驱动的低压发生器II的工作压力低于冷凝压力,使系统能利用传统单效吸收式制冷系统无法利用的低温太阳能热。以水-溴化锂作为工质对,模拟结果表明:当动力余热与太阳能负荷之比在3.5以上时,新循环的COP均在0.9以上,较传统单效系统效率约高20%。  相似文献   

20.
燃气锅炉排放的烟气中含有大量的水蒸气,因排烟温度未能降到露点以下而无法有效回收水蒸气的冷凝潜热。本文采用压缩式热泵与低温空预器相结合的方式深度回收燃气锅炉烟气余热,主要研究了在不同过量空气系数下供热回水流量和供热回水温度对排烟温度、余热回收效率、热泵机组制热性能系数及水蒸气冷凝率的影响。研究结果表明:在过量空气系数为1、供热回水流量为80 t/h条件下,热泵可将供热回水温度从50.0 ℃提升至65.1 ℃,其制热性能系数为4.25;空气进、出低温空预器的温度分别为-3.8 ℃和33.0 ℃,流量为15 360 m3/h时,排烟温度从90 ℃降至20 ℃,烟气余热回收效率达到14.8%;以29 MW的燃气锅炉为研究对象,按供热面积为5.2×105m2,供暖151天计算,烟气中回收的冷凝水量为8 000 t,占锅炉补水量的54.1%;该余热回收系统的投资回收期为2.1年,压缩式热泵烟气余热回收系统节能效果显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号