首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dry etched InAlN and GaN surfaces have been characterized by current-voltage measurement, Auger electron spectroscopy, and atomic force microscopy. Electron cyclotron resonance discharges of BCl3. BCl3/Ar, BCl3/N2, or BCl3/N2 plus wet chemical etch all produce nitrogen surfaces that promote leakage current in rectifying gate contacts, with the BCl3/N2 plus wet chemical etch producing the least disruption on the surface properties. The conductivity of the immediate InAlN or GaN surface can be increased by preferential loss of N during BCl3 plasma etching, leading to poor rectifying contact characteristics when the gate metal is deposited on this etched surface. Careful control of plasma chemistry, ion energy, and stoichiometry of the etched surface are necessary for acceptable pinch-off characteristics. Hydrogen passivation during the etch was also studied.  相似文献   

2.
An approach is presented which eliminates the problems caused by hydrocarbon polymer deposition during etching Hg1-x CdxTe with CH4/H2 based plasmas. We find that the addition of N2 to the plasma inhibits polymer deposition in the chamber and on the sample. We speculate that atomic nitrogen formed from N2 in the plasma has several beneficial effects: the elimination of polymer precursors, the reduction of the atomic hydrogen concentration, and a potential increase of methyl radical concentration. Evidence for the reaction between the nitrogen and the polymer precursors is presented. It is also demonstrated that the addition of N2 to CH4/H2 based electron cyclotron resonance (ECR) plasmas used to etch HgCdTe eliminates the roughness normally formed during etching and results in a steadier etch rate.  相似文献   

3.
A parametric study of the etch characteristics of Ga-based (GaAs, GaSb, and AlGaAs) and In-based (InGaP, InP, InAs, and InGaAsP) compound semiconductors in BCl3/Ar planar inductively coupled plasmas (ICPs) was performed. The Ga-based materials etched at significantly higher rates, as expected from the higher volatilities of the As, Ga, and Al trichloride, etch products relative to InCl3. The ratio of BCl3 to Ar proved critical in determining the anisotropy of the etching for GaAs and AlGaAs, through its effect on sidewall passivation. The etched features in In-based materials tended to have sloped sidewalls and much rougher surfaces than for GaAs and AlGaAs. The etched surfaces of both AlGaAs and GaAs have comparable root-mean-square (RMS) roughness and similar stoichiometry to their unetched control samples, while the surfaces of In-based materials are degraded by the etching. The practical effect of the Ar addition is found to be the ability to operate the ICP source over a broader range of pressures and to still maintain acceptable etch rates.  相似文献   

4.
Etch rates for InGaP and AlGaP are examined under electron cyclotron resonance (ECR) conditions in Cl2/Ar, BCl3/Ar, BCl3/N2, ICl/Ar, and IBr/Ar discharges. All the plasmas except IBr/Ar provide rapid etching of InGaP at rates above 1 μm min−1. ICl/Ar provides the highest etch rates. Unlike the Cl2/Ar and BCl3-based chemistries, the rates in ICl/Ar and IBr/Ar are almost independent of microwave power in the range 400–1000 W. Much lower rates were obtained for AlGaP in every discharge due to the greater difficulties in bond breaking that must precede formation and desorption of the etch products.  相似文献   

5.
Dry etching of multilayer magnetic thin film materials is necessary for the development of sensitive magnetic field sensors and memory devices. The use of high ion density electron cyclotron resonance (ECR) plasma etching for NiFe, NiFeCo, TaN, and CrSi in SF6/Ar, CH4/H2/Ar, and Cl2/Ar plasmas was investigated as a function of microwave source power, rf chuck power, and process pressure. All of the plasma chemistries are found to provide some enhancement in etch rates relative to pure Ar ion milling, while Cl2/Ar provided the fastest etch rate for all four materials. Typical etch rates of 3000Å/min were found at high microwave source power. Etch rates of these metals were found to increase with rf chuck power and microwave source power, but to decrease with increasing pressure in SF6/Ar, CH4/H2/Ar, and Cl2/Ar. A significant issue with Cl2/Ar is that it produces significant metal-chlorine surface residues that lead to post-etch corrosion problems in NiFe and NiFeCo. However, the concentration of these residues may be significantly reduced by in-situ H2 or O2 plasma cleaning prior to removal of the samples from the etch reactor.  相似文献   

6.
High density plasma etching of mercury cadmium telluride using CH4/H2/Ar plasma chemistries is investigated. Mass spectrometry is used to identify and monitor etch products evolving from the surface during plasma etching. The identifiable primary etch products are elemental Hg, TeH2, and Cd(CH3)2. Their relative concentrations are monitored as ion and neutral fluxes (both in intensity and composition), ion energy and substrate temperature are varied. General insights are made into surface chemistry mechanisms of the etch process. These insights are evaluated by examining etch anisotropy and damage to the remaining semiconductor material. Regions of process parameter space best suited to moderate rate, anisotropic, low damage etching of HgCdTe are identified.  相似文献   

7.
Dry etching of InGaP, AlInP, and AlGaP in inductively coupled plasmas (ICP) is reported as a function of plasma chemistry (BCl3 or Cl2, with additives of Ar, N2, or H2), source power, radio frequency chuck power, and pressure. Smooth anisotropic pattern transfer at peak etch rates of 1000–2000Å·min?1 is obtained at low DC self-biases (?100V dc) and pressures (2 mTorr). The etch mechanism is characterized by a trade-off between supplying sufficient active chloride species to the surface to produce a strong chemical enhancement of the etch rate, and the efficient removal of the chlorinated etch products before a thick selvedge layer is formed. Cl2 produces smooth surfaces over a wider range of conditions than does BCl3.  相似文献   

8.
The etching mechanism of (Bi4−xLax)Ti3O12 (BLT) thin films in Ar/Cl2 inductively coupled plasma (ICP) and plasma-induced damages at the etched surfaces were investigated as a function of gas-mixing ratios. The maximum etch rate of BLT thin films was 50.8 nm/min of 80% Ar/20% Cl2. From various experimental data, amorphous phases on the etched surface existed on both chemically and physically etched films, but the amorphous phase was thicker after the 80% Ar/20% Cl2 process. Moreover, crystalline “breaking” appeared during the etching in Cl2-containing plasma. Also the remnant polarization and fatigue resistances decreased more for the 80% Ar/20% Cl2 etch than for pure Ar plasma etch.  相似文献   

9.
The process window for the infinite etch selectivity of silicon nitride (Si3N4) layers to ArF photoresist (PR) and ArF PR deformation were investigated in a CH2F2/H2/Ar dual-frequency superimposed capacitive coupled plasma (DFS-CCP) by varying the process parameters, such as the low frequency power (PLF), CH2F2 flow rate, and H2 flow rate. It was found that infinitely high etch selectivities of the Si3N4 layers to the the ArF PR on both the blanket and patterned wafers could be obtained for certain gas flow conditions. The H2 and CH2F2 flow rates were found to play a critical role in determining the process window for infinite Si3N4/ArF PR etch selectivity, due to the change in the degree of polymerization. The preferential chemical reaction of hydrogen with the carbon in the hydrofluorocarbon (CHxFy) layer and the nitrogen on the Si3N4 surface, leading to the formation of HCN etch by-products, results in a thinner steady-state hydrofluorocarbon layer and, in turn, in continuous Si3N4 etching, due to enhanced SiF4 formation, while the hydrofluorocarbon layer is deposited on the ArF photoresist surface.  相似文献   

10.
High density plasma etching of zinc selenide using CH4/H2/Ar plasma chemistries is investigated. Mass spectrometry, using through-the-platen sampling, is used to identify and monitor etch products evolving from the surface during etching. The identifiable primary etch products are Zn, Se, ZnH2, SeH2, Zn(CH3)2, and Se(CH3)2. Their concentrations are monitored as ion and neutral fluxes (both in intensity and composition), ion energy, and substrate temperature are varied. General insights about the surface chemistry mechanisms of the etch process are given from these observations. Regions of process parameter space best suited for moderate rate, anisotropic, and low damage etching of ZnSe are proposed. Code 6752 Code 6174  相似文献   

11.
Dry etching characteristics of single crystal (100) CdTe epitaxial layers grown on GaAs substrates were studied using CH4, H2, and Ar as process gases in an electron cyclotron resonance plasma. A smooth and anisotropic etching was obtained with CH4, H2, and Ar. No hydrocarbon polymer was found on the etched surface, which was confirmed by x-ray photoelectron spectroscopy measurement. Etching of the CdTe surface was also possible with H2 and Ar; however, no etching was observed in the absence of H2. Dependence of the etch rate on plasma gas composition and flow rates was studied. Mechanisms of etching with and without CH4 supply were also studied. Etched CdTe layers also showed no deterioration of electrical properties, which was confirmed by photoluminescence measurement at 4.2 K and Hall measurement at 300 K.  相似文献   

12.
This study examined the plasma etching characteristics of ZnO thin films etched in BCl3/Ar, BCl3/Cl2/Ar and Cl2/Ar plasmas with a positive photoresist mask. The ZnO etch rates were increased in a limited way by increasing the gas flow ratio of the main etch gases in the BCl3/Ar, BCl3/Cl2/Ar and Cl2/Ar plasmas at a fixed dc self-bias voltage (Vdc). However, the ZnO etch rate was increased more effectively by increasing the Vdc. Optical emission spectroscopy (OES) and X-ray photoelectron spectroscopy (XPS) analyses of the ZnO surfaces etched at various Cl2/(Cl2 + Ar) mixing ratios revealed the formation of the ZnOxCly reaction by-products as a result of the increased etch rate with increasing Cl2 addition, compared with 100% Ar+ sputter etching. This suggests that at Cl2/Ar flow ratios ⩾20%, the ZnO etch process is controlled by an ion-assisted removal mechanism where the etch rate is governed by the ion-bombardment energy under the saturated chlorination conditions.  相似文献   

13.
We report on several new aspects of etching of Hg1−xCdxTe (x = 0.22), HgTe, and CdTe in CH4/H2/Ar plasmas generated by an electron cyclotron resonance plasma source. Using a residual gas analyzer, we have identified elemental Hg, TeH2, Te(CH3)2, and Cd(CH3)2 as the primary reaction products escaping from a HgCdTe surface during the plasma exposure. We have also demonstrated that a bias is not needed to etch HgCdTe at moderate temperatures (30-40°C), as previously suggested by other researchers. We have also developed a technique that avoids the formation of hydrocarbon polymer films on a HgCdTe sample during etching. Moreover, we have examined by x-ray photoelectron spectroscopy analysis and ellipsometry the surface condition of HgCdTe resulting from etching with this technique at zero bias. After exposure to the CH4/H2Ar plasma (or to a H2/Ar plasma only), the HgCdTe samples exhibited a depletion of the HgTe component in the near surface region (increase of the x-value). The depletion covered a range from virtually x = 1 after H2/Ar (10:2 in sccm) etching to values 0.4 < x < 0.5 after CH4/H2Ar (7:7:2 in seem) etching. Exposures to the plasmas were found to result in surface roughening of HgCdTe, however, plasmas rich in H2 were observed to cause significantly rougher surfaces than plasmas with small H2/CH4 ratios. This difference in the resulting surface condition is attributed solely to chemical effects since the respective ion energies are considered to be below the damage threshold for HgCdTe in both cases. We also investigated the etching of HgTe and CdTe single crystals. The etch rate of HgTe was found to be over one order of magnitude higher than that of CdTe under similar conditions. This large difference in etch rates is assumed to be responsible for the observed preferential etching of the HgTe component indicated by the HgTe depletion of the HgCdTe surface region.  相似文献   

14.
The Mo-based metal inserted poly-Si stack (MIPS) structure is an appropriate choice for metal gate and high-k integration in sub-45 nm gate-first CMOS device. A novel metal nitride layer of TaN or AlN with high thermal stability has been introduced between Mo and poly-Si as a barrier material to avoid any reaction of Mo during poly-Si deposition. After Mo-based MIPS structure is successfully prepared, dry etching of poly-Si/TaN/Mo gate stack is studied in detail. The three-step plasma etching using the Cl2/HBr chemistry without soft landing step has been developed to attain a vertical poly-Si profile and a reliable etch-stop on the TaN/Mo metal gate. For the etching of TaN/Mo gate stack, two methods using BCl3/Cl2/O2/Ar plasma are presented to get both vertical profile and smooth etched surface, and they are critical to get high selectivity to high-k dielectric and Si substrate. In addition, adding a little SF6 to the BCl3/O2/Ar plasma under the optimized conditions is also found to be effective to smoothly etch the TaN/Mo gate stack with vertical profile.  相似文献   

15.
This paper compares H2/Ar, CH4/H2/Ar, and CH4/H2/N2/Ar plasma etch processes for CdZnTe and CdTe substrates in view of their potential to provide high-quality substrate surfaces for subsequent HgCdTe epitaxy. An electron cyclotron resonance source was used as plasma generator, and ellipsometry, angle-resolved x-ray photoelectron spectroscopy and low energy electron diffraction were applied to characterize roughness, composition, and order of the resulting substrate surfaces. It was found that CdZnTe is much more susceptible to evolving surface roughness under H2/Ar plasma exposure than CdTe. The severe roughening observed at 100°C sample temperature was found to be correlated with a buildup of ZnTe at the surface, which suggests that the roughness formation may result from a preferential etching of the CdTe component. This surface degradation could be reduced by the addition of CH4 to the process gases. However, only a further addition of nitrogen gas balanced and substantially improved the plasma process so that atomically clean, very smooth, and stoichiometrically composed CdZnTe surfaces of long-range order were eventually obtained.  相似文献   

16.
The etching mechanism of ZrO2 thin films in BCl3/Ar plasma was investigated using a combination of experimental and modeling methods. It was found that an increase in the Ar mixing ratio causes the non-monotonic behavior of the ZrO2 etch rate which reaches a maximum of 41.4 nm/min at about 30-35% Ar. Langmuir probe measurements and plasma modeling indicated the noticeable influence of a BCl3/Ar mixture composition on plasma parameters and active species kinetics that results in non-linear changes of both densities and fluxes for Cl, BCl2 and . From the model-based analysis of surface kinetics, it was shown that the non-monotonic behavior of the ZrO2 etch rate can be associated with the concurrence of chemical and physical pathways in ion-assisted chemical reaction.  相似文献   

17.
A key technology required for fabricating single and multi-band mesa photodiodes with pixel sizes less than or equal to 25 μm is the development of an anisotropic etch process for HgCdTe. The primary approach investigated for this purpose has been electron cyclotron resonance (ECR) dry etching. This paper reviews an experiment used to optimize the ECR etch process at Lockheed Martin IR Imaging Systems, Inc. and then the use of the process to produce state-of-the-art LW photodiodes. In this work, a Ar:H plasma was used in a Plasma Therm series 700 ECR plasma etcher. Reactor variables were optimized by a designed experiment against the following response parameters: anisotropy, etch uniformity and “damage,” as measured by the photodiode zero bias and reverses bias impedance characteristics. The critical process variables of Ar:H gas pressure, lower magnet current, and electrode height were all optimized. The optimized process parameters were then utilized to fabricate arrays with 80K cut-off wavelengths in excess of 11 μm, R0As of 29 Ω-cm2, Rd20mV/Rd0mV>13 and quantum efficiency>71%.  相似文献   

18.
II–VI compounds have attracted increasing attention, primarily because of the large range of energy band gaps available. ECR plasma etching of CdTe in a CCl2F2/Ar discharge with rf biasing were investigated at different temperature and different flow rate ratio. The etch rate increases with the increase in flow rate of reactive gas and temperature. The use of ECR conditions with additional rf biasing provides the good etching of the surface and fast etch rates. The etch depths were measured by Dektek profilometry and the surface morphology with scanning electron microscopy. This paper reports the thermal effect on the etch process of CdTe and the effect of various gas flow rates and ratio between CCl2F2 and Ar.  相似文献   

19.
The etching mechanism of ZrO2 thin films and etch selectivity over some materials in both BCl3/Ar and BCl3/CHF3/Ar plasmas are investigated using a combination of experimental and modeling methods. To obtain the data on plasma composition and fluxes of active species, global (0‐dimensional) plasma models are developed with Langmuir probe diagnostics data. In BCl3/Ar plasma, changes in gas mixing ratio result in nonlinear changes of both densities and fluxes for Cl, BCl2, and BCl2+. In this work, it is shown that the nonmonotonic behavior of the ZrO2 etch rate as a function of the BCl3/Ar mixing ratio could be related to the ion‐assisted etch mechanism and the ion‐flux‐limited etch regime. The addition of up to 33% CHF3 to the BCl3‐rich BCl3/Ar plasma does not influence the ZrO2 etch rate, but it non‐monotonically changes the etch rates of both Si and SiO2. The last effect can probably be associated with the corresponding behavior of the F atom density.  相似文献   

20.
Reactive ion etching (RIE) was performed on GaN and BN thin films using chlorine-based plasmas. The optimum chemistry was found to be BCl3/Cl2/N2/Ar and Cl2/Ar at 30 and 40 mtorr for GaN and BN etching, respectively. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analysis of the GaN and BN etched surfaces show a decrease in the surface nitrogen atomic composition and an increase in chlorine impurity incorporation with increasing self-dc bias. A photo-assisted RIE (PA-PIE) process using an IR filtered Xe lamp beam was then used and resulted in improved etch rates and surface composition. Optical emission spectroscopy (OES) measurements have also shown photoenhancement of the etch process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号