首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
颗粒增强铝基复合材料研究进展   总被引:29,自引:1,他引:28  
综述了颗粒增强铝基复合材料研究现状,从增强体选择,材料制备方法,机械性能,应用研究等各个领域,详细阐述了复合材料的特点,并指出了今后复合材料的研究方向。  相似文献   

2.
颗粒增强铝基复合材料的研究现状   总被引:26,自引:0,他引:26  
本文综合评述了颗粒增强铝基复合材料增强相的选择及其有关性能。着重介绍了颗粒增强铝基复合材料的各种制备工艺及特点,以及颗粒增强铝基复合材料的机械性能和物理性能,并列举了颗粒增强铝基复合材料在一些领域中的应用情况。  相似文献   

3.
颗粒增强铝基原位复合材料   总被引:10,自引:0,他引:10  
原位反应合成的颗粒增强铝基复合材料的弹性模量,比强度和高温强度均高,是航空,汽车工业上很有发展潜力的新型结构材料。综述了它的制备方法,组织结构及力学性能方面的研究进展。  相似文献   

4.
颗粒增强铝基复合材料的制备及应用   总被引:21,自引:0,他引:21  
综述了颗粒增强铝基复合材料的制工艺及其优缺点,以及在宇航、汽车等领域的应用情况。  相似文献   

5.
与其它铝基复合材料相比,颗粒增强铝基复合材料成本低,制备工艺简单,而且具有高的弹性模量、低的热膨胀系数、良好的导热性和耐磨性等优点。颗粒增强铸造铝基复合材料是其中重要的一类。它们和普通铸造铝合金一样可重熔铸造成形,得到各种尺寸和形态复杂的复合材料铸件。 经过10年的工作,研究课题在材料制备、精密铸造技术、高精度机械加工、表面处理等方面取得了一系列突破。课题主要开展了以下几方面的工作:  相似文献   

6.
无压渗透法制备颗粒增强铝基复合材料的研究   总被引:3,自引:0,他引:3  
本文提出了一种制备颗粒增强铝基复合材料的新方法--无压渗透法,利用这种新工艺可在空气气氛下,于800℃ ̄1000℃温度范围内,无需借助外加压力或真空,使铝合金液自动渗入颗粒填料中,形具有良好耐磨性的金属基复合材料。  相似文献   

7.
碳化硅颗粒增强铝基复合材料的航空航天应用   总被引:91,自引:4,他引:87  
综合评述了近年来碳化硅颗粒增强铝基复合材料在航空航天领域所获得的一系列成功应用,并较为详尽地介绍了它们的具体应用情况以及对相关产品与装备所产生的积极作用。此外,还例举、分析和展望了该种复合材料在我国航空航天飞行器惯寻系统、光机结构及电子元器件中的几个颇具前景的应用方向。  相似文献   

8.
主要讨论了铝基复合材料中常用的几种增强颗粒SiC、B4C、TiC、Al2O3、TiB2、AlN的特性及制备中可能与基体发生的界面反应和改善方法,从而可选取适当的铝基体与增强颗粒组合,通过适当的方法,制备出高性能的复合材料.  相似文献   

9.
简单介绍了颗粒增强铝基复合材料的强化机理,重点概述了颗粒增强铝基复合材料的制备方法及其研究现状,包括搅拌铸造法、液态金属浸渗法、喷射沉积法、粉末冶金法、原位合成法,并总结了各自的优缺点,最后提出了颗粒增强铝基复合材料的研究趋向。  相似文献   

10.
对近年来颗粒增强铝基复合材料疲劳性能研究进展进行了总结,介绍了颗粒增强铝基复合材料的强化机制,概括了影响材料疲劳性能的几个重要的因素,从裂纹萌生以及裂纹扩展方面阐述了其疲劳行为及微观失效机制,并提出了未来颗粒增强铝基复合材料的研究趋势。  相似文献   

11.
本文研究了不同基体合金(工业纯铝和LY12)对石墨/铝复合材料性能的影响,并初步探讨了其影响机理。结果表明:基体合金严重影响金属基复合材料的界面状态、基体相组织及分布,从而影响到最终复合材料的性能。与纯铝相比,LY12基体使石墨/铝复材料性能大幅度下降。  相似文献   

12.
通过建立轴对称体胞模型,用数值分析手段研究了在变形速率范围10-4~105/s内,陶瓷颗粒增强铝合金复合材料的压缩塑性流变特征,讨论了不同颗粒形状(圆柱形和球形),不同颗粒体积含量(10%~50%)和不同铝合金基体(LC4、LY12CZ和7075)对金属基复合材料流动应力、应变率敏感性等的影响,构造了可以描述高应变率下金属基复合材料压缩行为的本构模型,并考虑了基体特性、颗粒形状、体积含量及应变率的影响,得出了与试验相吻合的结果。  相似文献   

13.
TiC颗粒增韧SiC基复合材料及其冷处理研究   总被引:7,自引:0,他引:7       下载免费PDF全文
研究了TiCP粒径与TiCP/SiC复合材料的抗弯强度和断裂韧性之间的关系,探讨了低温冷处理对复合材料性能的影响.结果表明:添加适宜粒径的TiC颗粒能够提高SiC材料的强度和韧性,但同时提高强度和韧性的粒径范围很窄.对复合材料进行低温冷处理,不仅可以进一步提高强度和韧性,而且可以改变增韧的粒径范围,使增韧和增强的粒径重合范围变宽.因此,形成一个较宽范围的强韧化区,为材料的强韧化设计和工艺的制定提供了依据.   相似文献   

14.
采用DSC方法研究了增强相对铝合金成核过程的影响。对基体合金与复合材料凝固临界温度的测量结果表明,增强相会抑制α-Al相的析出;增强相之间间隙尺寸越小,α-Al相析出的过冷度越大。α-Al不能在增强相表面非均质成核。与α-Al相不同,初晶硅相析出的过冷度在增强相存在的情况下减小,表明增强相可以作为初晶硅相成核的衬底。DSC方法可以有效地用来研究复合材料的成核现象。  相似文献   

15.
研究了功能梯度材料富陶瓷区金属颗粒界面断裂能量释放率。文中采用双层嵌套模型给出了金属颗粒界面的热应力与金属体积浓度的关系, 对于得到的每一梯度层中的颗粒界面热应力, 分析了颗粒界面断裂能量释放率,并研究了每一梯度层中金属颗粒的临界尺寸变化规律。   相似文献   

16.
SiC 颗粒增强铝基复合材料制备及机加性能研究   总被引:31,自引:6,他引:25       下载免费PDF全文
采用真空搅拌铸造法制备了20vol%SiC 颗粒增强A 356 基复合材料。SiC 颗粒在基体中分布均匀, 材料抗拉强度319M Pa, 弹性模量98. 9GPa, 延伸率1. 4%。采用聚晶金刚石-PCD 刀具, 在切削速度v= 30~ 40m/m in时, 复合材料对刀具损耗最小, 工件表面粗糙度良好。   相似文献   

17.
利用有限元模型分析了颗粒增强型金属基复合材料 ( PMMCs ) Al/SiC的颗粒尺寸对复合材料在不同应变率下的动态特性的影响。采用有限元三维立方体单胞模型嵌入单个和多个球形增强颗粒,颗粒直径分别为16 μ m和7.5 μ m,多颗粒模型内部颗粒随机分布。基体材料假设为弹塑性,应变强化及应变率强化均符合指数规律。模拟结果表明:颗粒尺寸、颗粒体积含量及应变率对金属基复合材料的动态特性的影响是相互耦合的。颗粒体积含量一定时,颗粒尺寸越小,复合材料流动应力越高;颗粒含量越高,材料流动应力越高;应变率越高,材料流动应力越高。   相似文献   

18.
颗粒增强复合材料刚塑性细观损伤本构模型的验证   总被引:1,自引:0,他引:1       下载免费PDF全文
验证已建立的刚性颗粒增强复合材料刚塑性细观损伤本构理论的合理性和可靠性。将上述本构理论的数值计算结果与SiC颗粒增强的铝基复合材料单轴拉伸实验结果进行比较。结果表明:由此本构模型得到的应力-应变理论曲线与拉伸实验所得的应力-应变曲线基本吻合,从而验证了该本构模型的合理性和可靠性。因此已建立的刚塑性细观损伤本构模型可用于数值计算,在一定程度上可预测颗粒增强复合材料的力学特性。在此基础上对大、小颗粒增强复合材料的延展性、空洞和颗粒体积分数演化规律等作了讨论。   相似文献   

19.
WCP/Fe-C 复合材料的界面反应和基体合金化研究   总被引:10,自引:1,他引:9       下载免费PDF全文
利用离心铸造成型碳化钨颗粒(WCP ) 增强Fe-C 基体合金的复合结构空心圆柱体, 采用宏观测量、X 射线衍射分析和扫描电镜(SEM ) 与能谱(EDS) 的微观分析, 对WCP/Fe-C 界面反应和基体合金化研究。结果表明, 在转速800~ 1200 r/m in离心铸造机上获得了外径167mm , 内径87mm , 高67mm 的空心圆柱体, 其表面层为16~ 20mm 大断面WCP/Fe-C 复合材料, 芯部为Fe-C 基体合金。铸造碳化钨颗粒(CTCP ) 的表面被高温Fe-C 基体合金熔融体部分溶解, 甚至解体; 原位( in2situ) 自生成细小短棒状WC 和W2C 先共晶析出相; 远离CTCP , 分布游离的细小颗粒状和网状WC、W 2C、Fe3W 3C2Fe4W 2C、Cr7C3 和Fe32C 碳化物。由于CTCP 部分溶解和扩散作用, 复合结构空心圆柱体的Fe-C合金基体被不同程度合金化。   相似文献   

20.
按球对称模型对粒子增强复合材料中热膨胀差(DCTE)热应力和残余应力进行了弹-塑性分析。结果表明,热应力或残余应力具有短程分布特点;粒子内部为常水静应力,界面和基体中径向应力与粒子内部同号,切向和周向应力与径向应力符号相反。存在一个基体发生初始屈服的临界温差tP,屈服范围随温差|t|而扩大。单程变温产生的残余应力与热应力完全相同;经过一个热循环后,若温差小于tP则残余应力为零;若大于tP,则在粒于和基体中产生残余应力。讨论了粒子形状和尺寸对残余应力和基体塑性变形对复合材料性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号